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κ Von Kármán constant



List of Symbols—Continued

30

λx, λz Streamwise and spanwise/azimuthal wave length

µ Dynamic viscosity

ν Kinematic viscosity

ρ Density

σ Faktor to determine degree of upwinding

τij Stress tensor

ψ Wave angle

ω Angular frequency

ωx, ωz Streamwise, spanw./azimuthal vorticity

Roman

a Speed of sound

A Disturbance amplitude

cf Skin-friction coefficient

cf,i Incompressible reference skin-friction coefficient

cp, cv Specific heats at constant pressure and volume, respectively

cph Phase speed in propagation direction

e Disturbance voltage from hot-wire measurements

E Mean voltage from hot-wire measurements

Ec, Fc, Gc Convective flux vectors

Ed, Fd, Gd Dissipative flux vectors

Et Total energy

Eαα One-dimensional energy spectrum for quantity α

f Frequency

F Normalized frequency

Fc Skin-friction transformation function

Fx Reynolds number transformation function



List of Symbols—Continued

31

H Source term

H12 Shape factor

ie Internal energy

k Thermal conductivity/Fourier mode

~k Wave vector

kc Azimuthal modenumber

K Number of spectral modes for the spanw./azimuthal direction

L Arbitrary reference length

Le Viscous length scale used for linear stability theory

M Mach number

M ′ Fluctuation Mach number

Mt Turbulent Mach number

nx, ny, nz Grid points in streamw., wall-normal, spanw./azimuthal direction

N Normalized amplitude

p Pressure

Pr Prandtl number

q Heat-flux vector

Q Q-criterion (Vortex identification)

r Radius of the conical coordinate system

rnose Cone nose radius

rturb Turbulent recovery factor

R Specific gas constant for air

Re Reynolds number

Rex Local Reynolds number

Rex,i Incompressible reference local Reynolds number

Rx Square root of local Reynolds number



List of Symbols—Continued

32

Reθ Reynolds number based on momentum thickness

t Time

t1 Pulse duration for the generation of a wave packet

tsim Duration of a simulation

T Temperature/Disturbance period

Tforcing Forcing period

u, v, w Streamwise, wall-normal and spanwise velocity component

U, V Streamwise, wall-normal mean velocity

U Vector of conservative variables

Uc Van Driest transformed streamwise velocity

vp Streamw. velocity distribution over the disturbance hole/slot

x, y, ϕ/z Streamwise, wall-normal and azimuthal/spanwise direction

x1, x2 Start and end position of disturbance hole/slot in streamw. direction

x0, xL Position of inflow and outflow

yc Wall-normal position of critical layer

yH Domain height

y0 Wall-normal position where cph,x = 1 − 1/M̃e

zW Domain width

Subscripts

ad Adiabatic

aw Adiabatic wall value

e Boundary layer edge conditions

[h, k] [Integer multiples of frequency, spanw./azimuthal wavenumber]

∞ Approach-flow conditions

max Maximum

ref Reference



List of Symbols—Continued

33

sec Secondary

w Wall value

Superscripts

c Asymmetric (cosine mode)

s Symmetric (sine mode)

– Reynolds-averaged flow quantity

′ Disturbance quantity/fluctuation about Reynolds average

′′ Fluctuation about Favre average

+ In near-wall units

∗ Dimensional value

˜ Variable in Fourier space/Rotated coordinate system



34

Abstract

With funding from AFOSR Grant No. FA9550-08-1-0211 the laminar–turbulent

transition process in supersonic and hypersonic boundary layers was investigated

using spatial and temporal Direct Numerical Simulations (DNS).

Our previous research indicated that oblique breakdown might be a highly rel-

evant nonlinear mechanism for supersonic boundary layers. However, a nonlinear

mechanism would only be relevant for the transition process if this mechanism can

lead to fully developed turbulence. Hence, to address this question, the late nonlin-

ear transition regime of a supersonic flat-plate boundary layer at Mach 3 was studied

using spatial direct numerical simulations. A set of highly resolved DNS of the en-

tire transition path from the linear regime to the turbulence stage was conducted.

These simulations demonstrated that a fully turbulent flow can develop via oblique

breakdown.

We also investigated the nonlinear disturbance development in a hypersonic bound-

ary layer on a sharp circular cone at Mach 8 using spatial direct numerical simulations.

The two main goals were to determine which nonlinear mechanisms are dominant in

a broad band, “natural” disturbance environment and then to perform controlled

transition simulations of these mechanisms. Towards this end, the flow conditions

from the experiments by Stetson et al. (1983b) are used. Wave packet simulations

were performed to understand the nonlinear interactions in a “natural” disturbance

environment. These simulations showed that the strongest nonlinear growth occurred

for oblique waves near the most amplified axisymmetric wave frequency, suggesting

fundamental resonance mechanism. Additionally, a nonlinear growth of low frequency

waves was observed, which were shown to be most likely caused by resonance triads.

Spatial simulations with controlled disturbance input showed that fundamental

resonance will initiate the transition process for the given flow conditions. The non-

linear regime of transition could be simulated up to the late stages, however, a fully

turbulent state could not be reached due to the overwhelming needs for computa-
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tional resources. For comparison, controlled simulations of oblique breakdown were

also performed. Results showed that the onset of transition is more benign for oblique

breakdown than for fundamental breakdown. However, definite conclusions could not

be drawn regarding which of the two mechanisms would be more relevant in a natu-

ral disturbance environment. Nevertheless, our simulations clearly demonstrate that

both of these mechanisms are likely to be relevent for hypersonic boundary layers.

In addition, temporal direct numerical simulations (TDNS) were performed to

compliment our investigations using spatial direct numerical simulations. Three dif-

ferent transition mechanisms, namely oblique breakdown, symmetric subharmonic

resonance and fundamental resonance were investigated using TDNS. Although sub-

harmonic resonance mechanisms were also detected for these flow conditions, this

mechanism is unlikely to lead to complete breakdown to turbulence. In contrast, it

was confirmed in these TDNS that fundamental resonance and oblique breakdown

are indeed viable paths to transition in hypersonic boundary layers.
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1. Introduction

1.1 Research Motivation

Laminar–turbulent transition in hypersonic boundary layers is a major unresolved

topic in Fluid Dynamics. Although significant progress has been made in recent

years, crucial aspects of the transition physics are still in the dark. For the future

High–Speed Civil Transport (HSCT) (Parikh & Nagel, 1990), as well as for numer-

ous defense–related applications such as high–speed missiles (Hingst, 1990; Korejwo

& Holden, 1992), high–speed reconnaissance aircraft (Scott, 1996), the Theater Mis-

sile Defense (TMD) interceptors (Johnson et al., 1997), and the Hyper–X program

(Berry et al., 2001; Borg et al., 2008), considerable progress toward the understanding

of high–speed boundary layer transition is required in order to develop reliable tran-

sition prediction methods that can be used for the design and safe operation of such

advanced flight vehicles. The crucial need for reliable transition prediction methods

for high–speed applications is due to the fact that transition to turbulence in su-

personic/hypersonic boundary layers is associated with considerable increases in heat

transfer. The increased heat loads (caused by transition) on the structure of the flight

vehicles represent the main difficulties in designing and operating high–speed vehicles.

Appropriate measures to guard against the heat transfer due to aero–thermal loads are

expensive and/or result in significant weight penalties. Good estimates of the tran-

sition location are of vital importance because only then can the aero–thermal loads

and surface temperatures be adequately predicted. In addition to surface heating,

transition to turbulence also has a significant effect on the aerodynamic performance

of high–speed flight vehicles, as the skin friction for turbulent boundary layers is

considerably higher than for the laminar boundary layer.

The understanding of transition for low–speed (incompressible) boundary layers

is far ahead of that for high–speed (compressible) boundary layers, although many
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crucial aspects are also still not understood even for the low–speed case. There are

several important reasons for the significant gap in understanding of high–speed tran-

sition relative to low–speed transition. Of course, historically, high–speed flight, in

particular hypersonic flight, has not been considered until recently and therefore the

need to understand and predict transition did not exist earlier. However, there are

two other main reasons why it is more difficult to obtain knowledge for high–speed

boundary layer transition than for the low–speed case: i) Quality experiments for

high–speed transition are considerably more difficult to carry out than for incom-

pressible transition and require high–speed testing facilities that are expensive to

construct and expensive to operate. ii) The physics of high–speed boundary layer

transition are much more complex than for low–speeds.

From linear stability theory (Mack, 1969), it is known that multiple instabil-

ity modes exist for high–speed boundary layer flows, in contrast to only one mode

(Tollmien–Schlichting, TS) for the incompressible case. The so-called first mode in

supersonic boundary layers is equivalent to the TS–mode in incompressible boundary

layers. However, in contrast to incompressible boundary layers, where, according to

Squires theorem, two–dimensional waves are generally more amplified than three–

dimensional waves, for supersonic boundary layers three–dimensional (oblique) waves

are more amplified than two–dimensional ones. Thus, experiments and theory always

have to address the more complex problem of three–dimensional wave propagation.

In addition to the first mode, which is viscous, higher modes exist for supersonic

boundary layers that result from an inviscid instability mechanism. According to

Linear Stability Theory (LST), the most unstable higher modes are two–dimensional

unlike oblique first modes. Also from linear stability theory, it is known that the

first mode is dominant (higher amplification rates) for low supersonic Mach numbers

while for Mach numbers above 4 the second mode is dominant (most amplified). In

addition, for typical supersonic/hypersonic flight vehicle configurations, the three-

dimensional nature of the boundary layers that develop, for example, on swept wings
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and/or lifting bodies, can give rise to so-called cross–flow instabilities and, as a conse-

quence, cross–flow vortices that can be stationary or traveling. Due to the difficulties

in carrying out experiments (and “controlled” experiments, in particular) and due to

the existence of multiple instability modes, the role and importance of the various

instability modes in a realistic transition process are not understood at all. Of course,

when amplitudes of the various instability modes reach high enough levels, nonlinear

interactions of these modes can occur. As a consequence, the transition process in

high–speed boundary layers is highly non–unique, which means that slight changes

in the environment or vehicle geometry may significantly alter the transition process.

An additional difficulty arises from the fact that for high–speed boundary layers

the transition processes in free flight may be very different from those in the labo-

ratory. As shown by Eissler & Bestek (1996), the difference between conditions for

free flight (“hot,” atmospheric conditions) and the laboratory (“cold” conditions) has

a considerable effect on the stability behavior and, as a consequence, on the transi-

tion processes. This is best summarized by a quote from Stetson (1990), a pioneer

in experimental high–speed transition research: “... one should not expect a tran-

sition Reynolds number obtained in any wind tunnel, conventional or quiet, to be

directly relatable to flight.” Furthermore, there are still crucial unresolved issues in

the understanding of hypersonic transition (e.g. roughness, nose radius, approach flow

conditions, etc.) that hamper the progress needed for the development of hypersonic

flight vehicles.

These facts clearly indicate the critical need of investigating high–speed boundary

layer transition. The numerical simulation codes can be tested and validated by

detailed comparison with laboratory experiments. Thereafter, they can be applied

with confidence to predict the effects of various conditions on the transition processes

and the resulting aerodynamic and aero–thermodynamic behavior. Thus, simulations

can provide the crucial understanding and information necessary for design and safe

operation of high–speed vehicles.
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1.2 Related Previous Research on High–Speed Boundary Layer Tran-
sition

1.2.1 Theoretical Investigations

There is a large number of scientific publications available on transition research, with

the majority of them focusing on low–speed transition. More recent investigations of

transition, both high– and low–speed, were presented at the IUTAM Symposium on

Laminar Turbulent Transition (Fasel & Saric, 1999; Govindarajan, 2004; Schlatter &

Henningson, 2009). Some of the most important aspects of high–speed transition are

discussed below.

Presently, the main body of knowledge on high–speed transition is still based on

Linear Stability Theory (LST) by Mack (1969, 1975, 1984, 2000). According to the

findings by Mack, the linear stability behavior of compressible (supersonic/hypersonic)

boundary layers differs from the incompressible case in several significant aspects:

1. More than one instability mode exists for M > 2.2: the first mode and the

second and higher (multiple) modes.

2. The first–mode disturbances are viscous (vortical) and are similar to the Tollmien-

Schlichting (TS) modes of incompressible boundary layers. First-mode distur-

bances dominate (largest amplification rates) at low supersonic Mach numbers.

However, in contrast to the incompressible case, the most amplified first-mode

disturbances are three–dimensional (oblique) and not two–dimensional.

3. The second and higher modes are inviscid (acoustic) and dominate at Mach

numbers higher than about 4, where the most unstable second–modes are always

two–dimensional (in contrast to the first mode).

4. In addition to the inviscid (acoustic) higher modes, Mack identified additional

viscous modes (“viscous multiple solutions) which, to date, have not been iden-

tified in experiments. However, they were also found in the Direct Numerical
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Simulations of Eissler & Bestek (1996).

5. First–mode disturbances can be attenuated (as for the incompressible case in air)

by wall cooling, wall suction, and favorable pressure gradients (Malik, 1989).

6. The second and higher inviscid modes can be stabilized by favorable pressure

gradients, suction and porous coating; however, they are destabilized by wall

cooling.

For a linear stability analysis, the effects of the growing boundary layer on the

disturbance growth are typically neglected (“parallel theory”). However, nonparallel

effects can be included by using the Parabolized Stability Equations (PSE) approach

(Bertolotti, 1991; Bertolotti et al., 1992; Chang & Malik, 1993; Pruett & Chang, 1993;

Herbert, 1994). Depending on various parameters (Mach number, Reynolds number,

frequency, etc.), nonparallel effects can significantly influence the disturbance growth

rates. LST and linear PSE are only applicable for the first (linear) stage of the

transition process where disturbance amplitudes are small and nonlinear interactions

are negligible. Nonlinear PSE, on the other hand, is applicable to the nonlinear stages

of transition (Bertolotti et al., 1992; Herbert, 1994), although the computational effort

increases tremendously when the development becomes strongly nonlinear as in the

later stages of transition. Also, analogous to incompressible boundary layer transition,

several attempts have been made to apply secondary instability theory to model the

initial three–dimensional nonlinear development (see, for example, Masad & Nayfeh

(1990); El-Hady (1991, 1992); Ng & Erlebacher (1992). However, whether or not

any of these secondary instability mechanisms are relevant for supersonic transition

is still an open question because it is very difficult to unequivocally identify them in

experiments.

Theoretical work by Seddougui & Bassom (1997) who investigated the linear sta-

bility behavior of flow over cones following the triple–deck–formulation revealed the

importance of the shock location relative to the cone radius. However, they only
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considered viscous modes and conceded that inviscid instabilities might alter their

findings. Seddougui & Bassom (1997) revealed that with increasing radius, i.e. mov-

ing in downstream direction, first–mode waves are more amplified than higher–mode

waves – a phenomenon already observed by Stetson et al. (1983a) in their experi-

ments. Additionally, Seddougui & Bassom (1997) stated that with the shock moving

away from the cone surface, amplification rates generally drop and axisymmetric

waves become more unstable than oblique waves.

Tumin (2007) investigated the three–dimensional spatially growing perturbations

in a compressible boundary layer within the scope of the linearized Navier–Stokes

equations. He solved the Cauchy problem under the assumption of a finite growth

rate of the disturbances and demonstrated that the solution could be presented as

an expansion into a biorthogonal eigenfunction system. This result can be applied to

decompose flow fields obtained by numerical simulations when pressure, temperature,

and all the velocity components, together with some of their derivatives, are available

(Gaydos & Tumin, 2004). Using this technique, Tumin et al. (2007, 2010) compared

the filtered amplitudes of the two discrete normal modes (the slow mode S and the

fast mode F) and the fast acoustic spectrum with the solution of a linear receptivity

problem obtained by direct numerical simulation. This example illustrates how the

multimode decomposition technique may serve as a powerful tool for gaining insight

into results obtained by numerical simulations.

1.2.2 Experimental Investigations

Conducting transition experiments in high–speed flows is extremely difficult and very

expensive. Therefore, relatively few successful experimental efforts have been reported

in the open literature. Most experiments have focused on the linear regime and the

early stages of the transition process. Some examples are the experiments by Laufer

& Vrebalovich (1960); Kendall (1975); Stetson et al. (1983a,b); Stetson (1988); Kosi-
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nov et al. (1990); Stetson & Kimmel (1992a); Schneider et al. (1996); Horvath (2002);

Schneider (2007), and Casper et al. (2009). An overview of the experimental efforts

on conical geometries up to 2001 is given by Schneider (2001b). The experiments

essentially verified some important parts of linear theory. However, quantitative dif-

ferences often occur that may be explained by the fact that in the experiments the

transition process was “natural,” i.e., it was initiated by the environmental distur-

bances, and not by “controlled” disturbance input (analogous to a vibrating ribbon

as in incompressible transition experiments). Also, quantitative differences between

experimental measurements and LST may be caused by the nonparallel effects of

the growing boundary layer being neglected in the linear stability analysis (“parallel

theory”).

All experimental efforts have suffered, more or less, from difficulties in controlling

the disturbance environment such as sound radiated from turbulent boundary layers

on the tunnel walls (Schneider, 2001a, 2008). Nevertheless, these “natural” transition

experiments could identify first and second instability modes (Kendall, 1975; Stetson

et al., 1983a). However, for example for Mach 8, considerable discrepancies arose

between planar boundary layers and boundary layers on axisymmetric cones when

“blow down” facilities were used. For axisymmetric cones, high-frequency second

modes were dominant, while for the planar boundary layer only low–frequency first-

mode disturbances were observed (Stetson & Kimmel, 1992b). In contrast, in an

experiment using a Ludwieg tube for a sharp–nosed cone at Mach 5, no dominant

second-mode disturbances could be detected (Wendt, 1993).

With the more recent experiments for a flat plate and axisymmetric cones at Mach

number 3.5 in the NASA-Langley “Quiet Tunnel,” a number of discrepancies between

LST and other experiments were resolved (Chen et al., 1989; Cavalieri, 1995; Corke

et al., 2002). Indications of nonlinear developments in the transition process were

observed by Stetson et al. (1983a) for a cone at Mach 8. Most of the experimen-

tal efforts suffered from the deficiency that no “controlled” disturbances could be
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introduced to allow for detailed quantitative comparisons with linear theory and, in

particular, to allow for systematic investigations of the nonlinear stages of transition.

Because of the lack of experimental evidence concerning the process in the later stages

of transition, it is still completely unclear which instability modes and which nonlin-

ear mechanisms are responsible for the final breakdown to turbulence in high–speed

boundary layers. However, the controlled experiments for a Mach 2 boundary layer

by Kosinov et al. (1994), using a harmonic point source for the disturbance excitation,

have indicated, that secondary instability mechanisms were present. In fact, Kosinov

& Tumin (1996) speculated that it was a subharmonic resonance of “oblique” funda-

mental disturbances which was later confirmed by our simulations (Mayer & Fasel,

2008).

Laddon & Schneider (1998) analyzed the stability behavior of controlled distur-

bances (introduced via a glow discharge) in a flow over a circular cone at small angles

of attack at M = 4. They measured a phase speed of 0.9 times the free–stream veloc-

ity and observed large rms–amplitude values in the outer part of the boundary layer

- both indications that a second–mode instability is present. They speculated that

although amplitude growth was significant, the disturbance amplitude of the glow dis-

charge was too small in order to cause transition. Kimmel et al. (1999) investigated

the three–dimensional boundary–layer flow over a cone with elliptical cross–section

(ratio 2 : 1) at Mach 8. Their measurements revealed that inflection–point profiles are

present close to the centerline where the boundary layer is also significantly thicker

than away from the centerline. With the laminar state of the flow already very com-

plex, they could only speculate that transition at the centerline is caused by the

inflection point while close to the shoulder of the cone transition is induced by cross–

flow instabilities. The instability of the inflectional boundary layer appeared to be

stronger than the instability of the cross flow so that transition occurred first at the

centerline and farther downstream at the shoulder of the cone. Continuing work of

Poggie et al. (2000) revealed second–mode disturbance waves close to the centerline
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of the elliptical cone. It remained unclear if cross–flow disturbances or first–mode

waves are present at the shoulder of the cone. According to Poggie et al. (2000),

an indication towards the presence of cross–flow instabilities is that the measured

wave length was rather short and because the group velocity vector of leading–edge

disturbances did not deviate more than 1 degree from the edge velocity vector, they

hypothesized that oblique leading edge disturbances do not play an important role

in the stability behavior at the shoulder of the cone. Although the amplitudes under

investigation were too high for a receptivity study, Schmisseur et al. (2002) saw a

response to thermal disturbances generated by a laser placed in the free stream close

to the shoulder of his 4:1 elliptic cone at M = 4.

More recently, Maslov and coworkers (see Shiplyuk et al. (2003), Bountin et al.

(2008)) reported “controlled” experiments for a sharp–nosed cone at M = 5.95 us-

ing a glow–discharge actuator to generate harmonic point source disturbances. They

investigated several nonlinear interactions and identified a “classical” subharmonic

resonance (with a two–dimensional second mode wave as the primary disturbance) as

a possible breakdown mechanism, possibly involving a three–dimensional first mode

as the subharmonic. However, in order to confirm this conjecture, a very high spatial

and temporal resolution of the measurements would be required which, of course, is

difficult experimentally. In fact, Shiplyuk et al. (2003) state in their paper, that “nu-

merical calculations would be helpful to clarify the scenarios of nonlinear interactions

that are identified in the present work.”

In a panel discussion at the 45th AIAA science meeting in Reno (2007), researchers

from industry, government labs, and academia, recognized that the current incom-

plete understanding of roughness–induced transition in supersonic and hypersonic

boundary layer flows is a major bottleneck for the development of supersonic and hy-

personic flight vehicles. In the past, numerous experimental investigations of different

flow configurations have been performed to gain insight into the physical effects of

roughness on the transition process. A detailed survey of these experimental studies
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was recently compiled by Schneider (2007). The purpose of these studies is to estab-

lish a correlation between roughness parameters and transition onset. Reda (2002)

or Berry & Horvarth (2007), for example, propose power–law relationships between

the location of transition onset (e.g. Reynolds number based momentum thickness)

and shape of the roughness (e.g. roughness height over momentum thickness). Most

of these correlations are, however, only valid for a certain flow configuration and for

roughness heights smaller than the boundary layer thickness.

1.2.3 Numerical Investigations

Due to the difficulties in experimental investigations of high–speed boundary layer

transition and due to the limitations of linear stability theory, so–called Direct Numer-

ical Simulations (DNS) represent a promising tool for high–speed transition research.

In DNS, the complete Navier-Stokes equations are solved directly by proper numerical

methods without making restrictive assumptions with regard to the base flow and the

form and amplitude of the disturbance waves. Therefore, DNS is particularly well

suited for investigations of the nonlinear development that is characteristic of the

later stages of high–speed boundary–layer transition. Two fundamentally different

models are used for DNS: the “temporal” and the “spatial” model. The so–called

“temporal model” is based on the assumption that the base flow does not change

in the downstream direction (thus excluding nonparallel effects). Also, assuming

spatial (downstream) periodicity of the disturbances, the disturbance development

(growth or decay) is then in the time-direction. The temporal model is analogous

to the temporal approach in LST with the frequency being complex and the spatial

wave number real. Due to the underlying assumptions, the temporal model can only

provide qualitative results. On the other hand, since a relatively short integration

domain can be used in the downstream direction (typically one or two wave lengths

of the fundamental wave) temporal simulations are relatively inexpensive and can be
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efficiently utilized for parameter studies.

In contrast, in the “spatial model” no assumptions are made with regard to

the base flow (thus nonparallel effects are included). The disturbance development

(growth or decay) is in the downstream direction as in physical laboratory or free–

flight conditions. Thus, the spatial model allows realistic simulations of high–speed

transition and direct comparison with wind–tunnel or free–flight experiments. How-

ever, simulations based on the spatial model are typically much more costly than for

the temporal model because a much larger downstream integration domain is required

(many wave lengths of the fundamental disturbance wave). This is particularly true

for simulations of high–speed boundary layer transition, where the growth rates of the

disturbance waves are often much smaller than for the incompressible case and where

the growth rates of certain modes decrease with increasing Mach number. Moreover

the transition zone length can be of the same order of magnitude as the length of the

preceding laminar boundary layer. Thus, relatively large (in the downstream direc-

tion) integration domains are required to allow small disturbances to grow to the large

amplitudes that characterize the nonlinear stages of the transition process and that

finally lead to the breakdown to turbulence. As a consequence, spatial simulations of

high–speed transition are computationally very challenging. Detailed discussions of

the DNS methodology for investigations of boundary layer transition, in particular

discussions of the temporal and spatial approach are given by Fasel & Konzelmann

(1990), Kleiser & Zang (1991), and Reed (1993).

Probably the first transition simulation for supersonic boundary layers, although

restricted to two–dimensional yet spatially evolving disturbances, was by Bayliss et al.

(1985), who employed an approach analogous to that by Fasel (1976) for incompress-

ible boundary layers. The first three–dimensional temporal DNS for flat–plate high–

speed boundary–layer transition was performed by Erlebacher & Hussaini (1990).

Here, only the linear and early nonlinear stages were explored. Other temporal sim-

ulations were performed by Normand & Lesieur (1992); Pruett & Zang (1992); Di-
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navahi & Pruett (1993); Adams & Kleiser (1993). From such temporal simulations,

Normand & Lesieur (1992) found that, for their case of a flat–plate boundary layer

with M = 5, transition occurred via a subharmonic secondary instability for the sec-

ond mode. This finding was consistent with results from simulations by Adams &

Kleiser (1993); Pruett & Zang (1992); Dinavahi & Pruett (1993) for a boundary layer

at Mach 4.5 on a hollow cylinder (the axisymmetric analog of a flat–plate bound-

ary layer). However, the main weakness of these “temporal” simulations is the fact

that they do not take the boundary–layer growth into account. In fact, experiments

by Stetson & Kimmel (1993) and PSE calculations by Chang et al. (1991) indicate

that subharmonic resonance may not be the preferred route to transition in realistic,

growing boundary layers (which include nonparallel effects).

Realistic simulations of transition scenarios including the effects of the growing

boundary layer require the use of the spatial simulation model. The first three–

dimensional spatial simulations of transition in supersonic boundary layers were re-

ported by Thumm (1991) for a Mach number of 1.6. In fact, from these and follow–up

simulations (Fasel et al., 1993), it was discovered that a new “Oblique Breakdown”

mechanism produces much larger growth rates than either subharmonic or fundamen-

tal resonance and requires much lower disturbance amplitudes. Therefore, we believe

that the “Oblique Breakdown” is a likely candidate for a viable path to transition for

supersonic boundary layers. Using PSE calculations, Chang & Malik (1993) confirmed

the validity of this oblique breakdown for a flat–plate boundary layer at M = 1.6.

Recently the highly resolved DNS of Mayer et al. (2008, 2009b) finally demonstrated

that oblique breakdown can indeed lead to a fully turbulent boundary layer for a

flat plate at Mach 3. Based on our DNS code (see Fasel et al. (1993)), Bestek &

Eissler (1996) performed simulations for Mach 4.8 and investigated various nonlinear

mechanisms including the “oblique breakdown” mechanism. Bestek & Eissler (1996)

also confirmed, for the first time, the existence of an additional “higher viscous”

mode, which Mack (1969) had predicted using LST analysis. Pruett & Chang (1993)
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carried out spatial DNS for a flat–plate boundary layer at Mach 4.5 and provided a

detailed comparison with PSE results. Later, an improved version of the code (Pruett

et al., 1995) was applied to a simulation of transition on axisymmetric sharp cones

at Mach 8 (Mach 6.8 after the shock, see Pruett & Chang (1995)). This simulation

was combined with PSE calculations such that the linear and moderately nonlinear

stages were computed by PSE while the strongly nonlinear and breakdown stages

of transition were computed by spatial DNS. This approach was motivated by the

experience that linear and moderately nonlinear wave propagations can be computed

more efficiently with PSE while the strongly nonlinear and breakdown stages (requir-

ing many spanwise Fourier modes) are computed more efficiently and more accurately

with DNS. In this simulation, a second–mode–breakdown resonance was also investi-

gated. The so–called rope–like structures obtained from numerical flow visualizations

of the simulation data for this breakdown process are similar to those observed in

high–speed transitional boundary layers on cones (see Pruett & Chang (1995). More

recently, Zhong and coworkers (see Zhong (2001)) investigated the leading edge re-

ceptivity of high–speed boundary layers using DNS. They also explored the effects of

the magnetic fields on the second–mode instabilities for a weakly ionized boundary

layer at M = 4.5 (Cheng et al., 2003).

Fezer & Kloker (2004) also investigated the same cone geometry used in the exper-

iments by Stetson et al. (1983a) but with atmospheric conditions (hot approach flow)

and a radiation–cooled wall. They claimed that a fundamental resonance (K–type)

with accompanying hot streaks along the wall initiated transition in their case. The

high temperature streaks along the wall resulted from streamwise vortex structures

which developed during this breakdown.

The physical mechanisms responsible for roughness–induced transition are still not

well understood. Reshotko & Tumin (2004) investigated the role of transient growth

in roughness–induced transition, where the non–modal growth of steady longitudinal

structures initiates an early breakdown to turbulence, and confirmed the correlation
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by Reda (2002). Reshotko and Tumins model, however, is based on the linearized

Navier-Stokes equations and cannot explain the nonlinear effects introduced by large

roughness heights. The latter case can more easily be investigated using DNS. Pre-

liminary DNS of the linear regime of roughness–induced transition were conducted

by Balakumar (2003), and Zhong (2007).

Discrete roughness elements can be simulated in numerical simulations using either

body–fitted grids or Immersed Boundary Techniques (IBT). Complex body–fitted

grids require a generalized coordinate transformation which is CPU time intensive.

For a limited number of discrete roughness elements IBT promises to be more com-

putationally efficient. One differentiates between methods that preserve the order of

accuracy of the underlying discretization by allowing for jump conditions in the so-

lution (e.g. Linnick & Fasel (2005)) and methods that do not alter the discretization

near the surface. The latter approach is less complicated and allows for an easier im-

plementation into existing codes. Examples are Peskin & McQueen (1989); Goldstein

et al. (1993); Fadlun et al. (2000); von Terzi et al. (2001).

Zhong (2005) and Husmeier & Fasel (2007) analyzed three different nose radii

under Stetson’s experimental conditions (c.f. Stetson et al. (1983b)). They observed

a shift to lower dominant frequencies with increasing bluntness due to a thickening

of the boundary layer. However, Zhong (2005) and Husmeier (2008) were unable to

find conclusive evidence for the transition reversal as reported by Stetson & Kimmel

(1992b). In Zhongs simulations the critical Reynolds number increased monotonically

with increasing nose radius, whereas in the experiments of Stetson & Kimmel (1992b)

the initial increase in critical Reynolds number was followed by a decrease. As a result,

there was an optimal nose radius regarding the transition delay in these experiments.

More recently, Lei & Zhong (2009, 2010) performed stability investigations of the

Mach 5.5 blunt cone experiments of Stetson & Rushton (1967), however, they also

did not observe transition reversal in their simulations.

Relatively few attempts have been made to employ Large–Eddy Simulation (LES)
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for transitional supersonic boundary layers (see, for example, Normand & Lesieur

(1992); Zang et al. (1992). The few simulations reported in the literature have to

be viewed as being of an exploratory nature with regard to the applicability of LES

for boundary layer transition. Nevertheless, these attempts demonstrated that LES

could be employed advantageously for supersonic transition simulations. The main

issues in applying LES for high-speed transition are the use of proper subgrid-scale

(sgs) models that are physically consistent throughout the entire transition process.

Of course, LES would be a highly valuable tool for investigating the late stages

of transition. As mentioned previously, spatial DNS for supersonic boundary layer

transition is very expensive due to the large computational domains that are required

in the downstream direction. In addition, for DNS that include the final stages of

transition (the actual breakdown to turbulence), an extremely fine grid is required

which, as a consequence, places high demands with regard to computer memory and

computation times. LES on the other hand requires considerably less resolution and,

as a consequence, the amount of computer memory and computation times is reduced

accordingly.
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2. Governing Equations

The flow considered here is governed by the unsteady, three-dimensional, compressible

Navier–Stokes equations, consisting of the equations for the conservation of mass,

momentum and energy. Using conservative variables and conical coordinates these

equations can be written as follows

∂U

∂t
+

1

r

∂ (r (Ec + Ed))

∂x
+

1

r

∂ (r (Fc + Fd))

∂y
+

1

r

∂ (Gc + Gd)

∂ϕ
+ H = 0 . (2.1)

Here, U represents the vector of the conservative variables and is given as U =
[
ρ, ρu, ρv, ρw,Et

]
, where the symbols ρ, u, v, w and Et denote the fluid density,

streamwise velocity, wall-normal velocity, azimuthal/spanwise velocity and total en-

ergy, respectively. The convective flux vectors (Ec, Fc, Gc), the viscous and heat

conduction terms (Ed, Fd, Gd) and the source term (H) can be calculated from the

previously introduced flow quantities and pressure p using the following equations

Ec =




ρu
ρu2 + p
ρuv
ρuw

(Et + p)u



,Fc =




ρv
ρuv

ρv2 + p
ρvw

(Et + p) v



,Gc =




ρw
ρuw
ρvw

ρw2 + p
(Et + p)w



,

Ed =




0
−τxx

−τxy

−τxϕ

−uτxx − vτxy − wτxϕ + qx



,Fd =




0
−τxy

−τyy

−τyϕ

−uτxy − vτyy − wτyϕ + qy



,

Gd =




0
−τxϕ

−τyϕ

−τϕϕ

−uτxϕ − vτyϕ − wτϕϕ + qϕ



,

H =




0
−1

r
sin θc (ρw2 − τϕϕ + p)

−1
r
cos θc (ρw2 − τϕϕ + p)

1
r
sin θc (ρuw − τxϕ) + 1

r
cos θc (ρvw − τyϕ)

0



.
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The total energy is computed from the internal energy ie and the velocities as

Et = ρ

(
ie +

1

2
(u2 + v2 + w2)

)
. (2.2)

The stresses in the conical coordinate system are determined by

τxx =
µ

Re

(
4

3

∂u

∂x
− 2

3

∂v

∂y
− 2

3

1

r

∂w

∂ϕ
−2

3

1

r
(u sin θc + v cos θc)

)
, (2.3a)

τyy =
µ

Re

(
4

3

∂v

∂y
− 2

3

∂u

∂x
− 2

3

1

r

∂w

∂ϕ
−2

3

1

r
(u sin θc + v cos θc)

)
, (2.3b)

τϕϕ =
µ

Re

(
4

3

1

r

∂w

∂ϕ
− 2

3

∂u

∂x
− 2

3

∂v

∂y
+

4

3

1

r
(u sin θc + v cos θc)

)
, (2.3c)

τxy =
µ

Re

(
∂v

∂x
+
∂u

∂y

)
, (2.3d)

τxϕ =
µ

Re

(
1

r

∂u

∂ϕ
+
∂w

∂x
− 1

r
w sin θc

)
, (2.3e)

τyϕ =
µ

Re

(
1

r

∂v

∂ϕ
+
∂w

∂y
− 1

r
w cos θc

)
, (2.3f)

and the heat-flux vector is given as

q = − µ

(γ − 1)RePrM2

(
∂T

∂x
,
∂T

∂y
,
1

r

∂T

∂ϕ

)
, (2.4)

with µ as dynamic viscosity.

The conical coordinate system used for the equations above is illustrated in fig-

ure 2.1. The streamwise direction, parallel to the cone surface, is denoted by x.

The wall-normal direction, orthogonal to the cone surface, is specified by y and ϕ

represents the azimuthal direction. The local radius r can be calculated from the

streamwise and wall-normal direction according to r = xsinθc + y cos θc, with θc as

cone half angle. The governing equations in a rectangular coordinate system, which

are applied for flat-plate simulations, can be obtained from the equations in the conical

coordinate system for θc = 0 and r → ∞. The equations in rectangular coordinates

are, for example, discussed in Harris (1997).
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Figure 2.1: Illustration of a conical coordinate system.

The set of equations is closed with the equation of state for an ideal gas in dimen-

sionless form,

p =
ρT

κM2
, (2.5)

and Sutherland’s law is used to calculate the viscosity as a function of temperature.

It has the following nondimensional form

µ = T
3

2

1 + C
T ∗

∞

T + C
T ∗

∞

. (2.6)

Here, C = 110.4K and T ∗
∞ represents the dimensional temperature of the approach

flow. The viscosity is nondimensionalized by its approach-flow value. For the Mach

8 cone simulations, the viscosity is calculated using Sutherland’s law with low tem-

perature correction as follows.

µ =





C1

µ∗

∞

· T ∗
1 , if T ∗ < T ∗

1
C1

µ∗

∞

· (TT ∗
∞) , if T ∗ ∈ [T ∗

1 ;T ∗
2 ]

C2

µ∗

∞

· (TT ∗
∞)

3

2 / ((TT ∗
∞) + T ∗

2 ) , if T ∗ > T ∗
2

(2.7)

where

T ∗
1 = 40.0K, C1 = 6.93873 · 10−7Ns/m2K,
T ∗

2 = 110.4K, C2 = 1.4580 · 10−5Ns/m2K1/2.

The flow quantities are nondimensionalized with their approach-flow values, in-

dicated by the subscript ∞, except for the pressure and the total energy, which are
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scaled by the dynamic pressure ρ∗∞U
∗
∞

2. Furthermore, the independent variables x,

y and t are nondimensionalized using a reference length scale L∗ (and the approach

streamwise velocity U∗
∞ for t). In both Navier–Stokes codes used for the present work,

this reference length scale is an arbitrary, constant value and will always be denoted

by L∗ throughout this report whereas all linear stability solvers applied to the differ-

ent problems in this report are based on a so-called viscous length scale L∗
e, which

represents an estimate for the local boundary-layer thickness

L∗
e =

√
ν∗ex

∗

U∗
e

. (2.8)

Here, ν∗e is the dimensional kinematic viscosity at the boundary layer edge (sub-

script e).

The nondimensionalization of the governing equations introduces the Reynolds

number Re, Mach number M , Prandtl number Pr and the ratio of specific heats γ

as nondimensional parameters

Re =
ρ∗∞U

∗
∞L

∗

µ∗
∞

, P r =
µ∗c∗p∞
k∗

,

M =
U∗
∞

a∗∞
=

U∗
∞√

(γ − 1) c∗p∞T
∗
∞

, and γ =
c∗p∞

c∗p∞ −R
, (2.9)

with c∗p∞, k∗, a∗∞ and R being the specific heat at constant pressure, the thermal

conductivity, the speed of sound and the specific gas constant for air of the approach

flow, respectively. For all simulations, the Prandtl number is assumed to be constant

and has a value of 0.71. Hence, the Prandtl number relates the thermal conductivity

k directly to the viscosity µ.

The Reynolds number based on the viscous length scale L∗
e is usually called local

Reynolds number since it is only valid for one particular streamwise position. This

Reynolds number is denoted by

Rx =
U∗

eL
∗
e

ν∗e
=

√
U∗

e x
∗

ν∗e
(2.10)

throughout this report.
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3. Numerical Method

In this chapter, the computational methods used for all direct numerical simulations

(DNS) discussed in this report are presented. The results for a flat plate (Chapter 5)

have been obtained by employing the Navier–Stokes code NSCC (Navier–Stokes Com-

pressible in C) while the cone results were computed with a new higher order code.

Both codes were developed in our CFD laboratory (Harris, 1997; Laible et al., 2008,

2009). Section 3.1 explains the numerical method and boundary conditions imple-

mented in NSCC. Additional information regarding this code can also be found in

von Terzi (2004) and Husmeier (2008). Note, however, that with the actual version

of NSCC used in this report cone geometries cannot be calculated as in Husmeier

(2008). Instead other features have been implemented, as for example full Fourier

transformations in spanwise direction. The new higher order Navier–Stokes code is

discussed in section 3.2.

3.1 NSCC Code

The governing equations from chapter 2 are solved on a rectangular coordinate sys-

tem. An explicit fourth-order Runge–Kutta method (Ferziger, 1998) is used for time

integration. Harris (1997) optimized the time integration in NSCC in order to reduce

storage requirements. Applied to the following model ordinary differential equation

dφ

dt
= f (t, φ) , (3.1)
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the explicit fourth-order Runge–Kutta method can be written as

1st substep:

φ1 := φn +
∆t

2
f (t, φn) ,

2nd substep:

φ2 := φn +
∆t

2
f

(
t+

∆t

2
, φ1

)
,

φ1 := φ1 + 2φ2 ,

3rd substep: (3.2)

φ2 := φn + ∆tf

(
t+

∆t

2
, φ2

)
,

φ1 :=
1

3
(−φn + φ1 + φ2) ,

4th substep:

φn+1 := φ1 +
∆t

6
f (t+ ∆t, φ2) .

The symbol “:=” in equations (3.2) indicates that these equations are assignments

and thus are only valid in the context of a programming language. Variables with

the subscript n are from the old timestep n while variables with subscript n + 1 are

the result of the time integration (new timestep). ∆t is the stepsize in time.

The spatial derivatives in streamwise and wall-normal direction (x and y) of equa-

tions (2.1), (2.3), and (2.4) are discretized using second-order one-sided finite differ-

ences inside the integration domain. These finite differences have the following form

for grid point i and timestep n

(
∂φ

∂x

)i+

n

≃ −φi+2
n + 8φi+1

n − 7φi
n

6∆x
, (3.3a)

(
∂φ

∂x

)i−

n

≃ φi−2
n − 8φi−1

n + 7φi
n

6∆x
, (3.3b)

where (+) denotes forward differencing and (−) indicates backward differencing. In

the literature, these stencils are usually referred to as “4th-order split” finite differ-

ences since averaging equations (3.3) leads to a standard 4th-order central difference
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stencil. For every Runge–Kutta substep in equations 3.2, the integration direction

(forward/backward differencing) of these one-sided stencils is altered. Altering the

integration direction increases the overall accuracy of the numerical scheme. Orig-

inally, the idea of using low-order one-sided finite differences and altering the inte-

gration direction for different substeps of the time integration scheme was introduced

by MacCormack (Tannehill et al., 1997). He used first-order one-sided differences

for the spatial derivatives and a second-order Runge–Kutta method (Heun’s method)

for the time integration. Although first-order one-sided differences are applied in

MacCormack’s method, the overall accuracy in time and space is second order. A

similar behavior can also be observed in the present case. Harris (1997) showed that

by applying his numerical scheme to different model equations (wave equation and

diffusion equation) a third-order method can be recovered.

Equations (3.3) are only valid for first derivatives. However, in equation (2.1),

also second derivatives with respect to all spatial directions and cross derivatives,

second derivatives with respect to two spatial directions, are present (in the stress

and heat-flux terms). In NSCC, these derivatives are computed by employing twice

the finite differences for a first derivative (equations 3.3) with opposite integration

direction instead of using a finite difference stencil for a second derivative directly.

Harris (1997) denotes the derivatives in equation (2.1) as “outer” derivatives and the

derivatives in equations (2.3) and (2.4) as “inner” derivatives.

3.1.1 Domain Boundaries

The finite difference stencils used inside the integration domain cannot be applied at

the domain boundaries and at the first grid points adjacent to the boundary points

since the values of all flow variables beyond the boundaries are not known. Hence,

at these grid points new finite difference stencils have to be employed, which are gen-

erally referred to as “boundary closure” in the literature. For the method developed
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Figure 3.1: Illustration of the computational grid and the stencils implemented in
NSCC for the streamwise direction x at one timestep n. (◦) denotes grid point where
the spatial derivative is computed. (•) represents grid points that are used for the
calculation of the spatial derivative at grid point (◦). Note that this notation follows
Kloker (1993).

by Harris (1997), only the grid points adjacent to the boundary points need to be

calculated by a different stencil while the boundary points are set by the boundary

conditions (section 3.1.3) except for the free-stream boundary, where the boundary

condition is applied to both grid points. Harris (1997) chose the following finite

difference stencils for the calculation of grid points adjacent to the boundary points
(
∂φ

∂x

)2

n

≃ φ5
n − 5φ4

n + 10φ3
n − 3φ2

n − 3φ1
n

6∆x
, (3.4a)

(
∂φ

∂x

)nx−1

n

≃ −φnx−4
n + 5φnx−3

n − 10φnx−2
n + 3φnx−1

n + 3φnx
n

6∆x
. (3.4b)

Note that for these stencils, averaging with the corresponding stencil from equa-

tions (3.3) results again in a fourth-order finite difference stencil. An illustration of

the computational grid and the stencils implemented in NSCC for the streamwise

direction x is given in figure 3.1. In this figure, (◦) denotes the grid point where the

spatial derivative is computed while (•) indicates all grid points that are used for

the calculation of the spatial derivative at grid point (◦). Figure 3.1 also shows the

coefficients used for the calculation of a particular finite difference stencil.
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3.1.2 Spanwise Discretization

The spanwise domain is assumed to be periodic and therefore, transformed into spec-

tral space using Fast Fourier transforms. This has an implication on the calculation

of any spanwise derivative since in spectral space, a derivative with respect to z for

Fourier mode k at timestep n is defined as

(
∂̃φ

∂z

)k

n

≃ βkφ̃
k
n and

(
∂̃φ

∂z

)k

n

≃ −βkφ̃
k
n (3.5)

for cosine and sine modes, respectively. Here, the spanwise wavenumber βk is obtained

from

βk =
2πk

λz

. (3.6)

The spanwise wave length λz determines the spanwise domain extent of the DNS.

NSCC has two options for the Fourier transformations: (i) All flow variables

(i.e. u-velocity, v-velocity, etc.) are assumed to be symmetric to the centerline,

except for the spanwise velocity w, which is antisymmetric. Symmetric quantities

are then transformed into Fourier space using a Fourier cosine transformation and

antisymmetric variables (w) are transformed by a Fourier sine transformation. Thus,

only one-half spanwise wave length λz has to be computed for this configuration.

(ii) No symmetry is assumed and therefore, all variables are transformed using a

full Fourier transformation. This option requires the computation of the entire wave

length λz in spanwise direction.

The Fourier transformations in NSCC are based on the VFFTPK library, which

can be downloaded from netlib (http://www.netlib.org/vfftpack/). According to this

library and its implementation in NSCC, a Fourier cosine transformation into spectral
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space and its back transformation into physical space are given by

physical→spectral:

φ̃c
k = F (φ)c

k ∼ 1

2(nz − 1)

[
φc

0 + 2
nz−1∑

l=1

φc
l cos

(
πkl

nz − 1

)]
(3.7a)

spectral→physical:

φc
l = F−1

(
φ̃
)c

l
∼ φ̃c

0 + 2
K−1∑

k=1

φ̃c
kcos

(
πkl

nz − 1

)
(3.7b)

for k = 0, ..., K − 1 and l = 0, ...., nz − 1, respectively. φ̃c
k represent the Fourier

amplitudes for mode k. Moreover, nz indicates the number of grid points used for

resolving the spanwise direction in physical space over the interval [0, (nz − 1)∆z]

with

∆z =
λz

2(nz − 1)
(3.8)

and K represents the number of modes in Fourier space (for the simulations nz =

2K − 1).

The Fourier sine transformation to spectral space and its back transformation into

physical space are as follows

physical→spectral:

φ̃s
k = F (φ)s

k ∼ − 1

(nz − 1)

nz−1∑

l=1

φs
l sin

(
πkl

nz − 1

)
(3.9a)

spectral→physical:

φs
l = F−1

(
φ̃
)s

l
∼ −2

K−1∑

k=1

φ̃s
ksin

(
πkl

nz − 1

)
(3.9b)

for k = 0, ..., K − 1 and l = 0, ...., nz − 1, respectively.

In contrast to a symmetric simulation where only one-half of the spanwise wave

length has to be calculated, an asymmetric simulation requires the entire spanwise

wave length as computational domain. Hence, for symmetric simulations nz represents

the number of grid points in one-half wave length, whereas for asymmetric simulations,
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this number depicts the grid points in one full spanwise wave length. In this case, the

grid spacing in spanwise direction is therefore obtained from

∆z =
λz

(nz − 1)
. (3.10)

The full Fourier transformation for an asymmetric simulation are implemented in

NSCC according to

physical→spectral:

φ̃0 ∼ 1

2nz

nz−1∑

l=0

φl (3.11a)

φ̃c
k ∼ 1

nz

nz−1∑

l=0

φl cos

(
2πkl

nz

)
(3.11b)

φ̃s
k ∼ 1

nz

nz−1∑

l=0

φl sin

(
2πkl

nz

)
(3.11c)

spectral→physical:

φl ∼ φ̃0 +
K−1∑

k=1

[
φ̃c

kcos

(
2πkl

nz

)
+ φ̃s

ksin

(
2πkl

nz

)]
(3.11d)

with k = 0, ..., K − 1 and l = 0, ...., nz − 1. As for the symmetric case, K denotes

the number of Fourier modes. The entire storage space in NSCC for the Fourier

modes is however 2K−1 since the cosine modes and the sine modes have to be stored

separately.

The representation of the spanwise direction in Fourier space has one disadvantage:

Nonlinear terms in the governing equations (chapter 2) cannot be easily calculated in

Fourier space. Thus, for the computation of these terms, the governing equations are

transformed into physical space and thereafter, transformed back into spectral space.

This approach is commonly referred to as “pseudo-spectral” (Canuto et al., 1988).

3.1.3 Boundary Conditions

At the inflow, the conservative quantities ρ, ρui and Et, obtained from the similarity

solution of a compressible flat-plate boundary layer, are specified. The no-slip and
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no-penetration conditions are used at the wall except for the disturbance hole/slot. In

addition, the wall is assumed to be adiabatic for the base flow, whereas temperature

fluctuations at the wall are assumed to vanish. At the outflow, a buffer domain tech-

nique (Meitz & Fasel, 2000) is implemented to avoid reflections of disturbance waves

from the outflow boundary. At the free-stream boundary, all total flow quantities are

separated into the mean and disturbance quantities. For the mean flow quantities, a

von Neumann condition is applied, whereas for the disturbance quantities, an expo-

nential decay condition is employed, which was derived for compressible flow using

linear stability considerations (Thumm, 1991). Harris (1997) provides details on the

implementation of these boundary conditions in NSCC.

3.2 New Higher Order Code

In the new higher order code (Laible et al., 2008, 2009), the Navier–Stokes equations

are integrated in time using the explicit fourth-order Runge–Kutta method. The

implementation of this method in the code follows exactly from Harris (1997) as

explained in the previous section (equation 3.2).

For the spatial differentiation inside the computational domain, several different

options are available. In this section, only the options that were used for the simu-

lations presented in chapter 6 and 7 are discussed (for more detail, see Laible et al.,

2008, 2009). The interior spatial discretization is mainly based on high-order accurate

finite differences. In particular, the inviscid fluxes (convective terms Ec and Fc in

equation 2.1) are divided in an upwind flux and a downwind flux using van Leer’s

splitting (van Leer, 1982). Then 9th-order grid centered upwind differences (Zhong,

1998) are applied to evaluate the derivatives for these fluxes in x and y-direction.

These grid centered upwind differences are derived using a factor σ, which prescribes
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the degree of upwinding,

(
∂φ

∂x

)i

n

=
i+N∑

k=i−N

ck (σ)φk
n − σ∆x

(
∂(2N)φ

∂x(2N)

)i

n

+ ... . (3.12)

For σ = 0, the upwind scheme reduces to a standard central difference scheme. The

ck’s in equation (3.12) are the stencil coefficients, which are dependent on the factor

σ. σ is obtained from an eigenvalue analysis of the discretized (in space) linear

wave equation (Zhong, 1998). For the 9th-order upwind scheme (N = 5), Laible

et al. (2008) obtained a value of σ = −1500 in order to stabilize the numerical

scheme. ∆x is the averaged grid spacing over the stencil interval and has the order of

2N − 1. The parameter N determines the number of grid points used for the stencil.

Moreover, equation (3.12) clearly shows that for σ 6= 0 an additional error term is

introduced, which reduces the order of the centered upwind difference scheme by one

when compared to the central difference scheme with the same number of grid points.

The derivatives of the viscous terms (Ed and Fd in equation 2.1) and the source

term (H) are calculated using 8th-order central differences in streamwise direction

and wall-normal direction. It is important to note that the second derivatives in

the viscous terms are calculated directly instead of applying twice a first derivative

stencil. This is in contrast to the method by Harris introduced in section 3.1 and

improves the stability of the numerical scheme (Zhong, 1998).

All finite difference stencils are derived on a non-uniform grid. The coefficients

(ck’s in equation 3.12) are obtained from a Lagrange polynomial interpolation (Zhong

& Tatineni, 2003). For a stencil based on N grid points with coordinates xi and node

values φi, the N − 1 degree polynomial is given by

PN(x) =
N∑

i=1

li(x)φi, with li(x) =

∏N
l=1,l 6=i(x− xl)∏N
l=1,l 6=i(xi − xl)

. (3.13)

For example, a second derivative at grid point xi can be calculated by differentiating
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the polynomial PN(x) twice according to

(
d2φ(x)

dx2

)

x=xi

=

(
d2PN(x)

dx2

)

x=xi

=
N∑

j=1

bi,jφj , (3.14)

where the coefficients bi,j have different values for different grid points with index i

(non-uniform grid), and are given by

bi,j =
d2

dx2
(lj(x))x=xi

. (3.15)

3.2.1 Domain Boundaries

Since boundary closures based on high-order finite difference schemes may develop

oscillations and hence, are usually unstable, Laible used different methods in order

to stabilize the numerical scheme at the boundaries. Figures 3.2 and 3.3 summarize

Laible’s approach for the grid centered upwind difference stencils used for the dis-

cretization of the convective terms. In streamwise direction the numerical scheme

is mainly stabilized by employing standard central difference stencils with reduced

order up to the last three points where the discretization is switched to one-sided 5th-

order finite differences. Although the order is reduced from 9th-order upwind finite

differences to one-sided 5th-order finite differences near the outflow, only a limited

upstream effect of the lower-order numerical scheme is expected since this numeri-

cal scheme is utilized for supersonic and hypersonic transition simulations. Near the

inflow such boundary treatment is not required since the initial condition is known

upstream of the inflow boundary of the high-order DNS (more details can be found

in section 3.2.3). Therefore, grid centered upwind finite differences can be applied up

to the first grid point of the computational domain.

For the discretization of the viscous terms (second derivatives) near the inflow,

the same approach as for the convective terms was chosen. The flow field is known

upstream of the inflow and hence, high-order central difference stencils can be used

up to the inflow. Near the outflow however, one-sided difference stencils based on the
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Last point with centered upwind differences
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Figure 3.2: Illustration of the computational grid and the stencils implemented in the
new high-order code by Laible (Laible et al., 2008, 2009) for the inviscid terms (Ec

and Fc in equation 2.1) in streamwise direction x at one timestep n. (◦) denotes grid
point where the spatial derivative is computed. (•) represents grid points that are
used for the calculation of the spatial derivative at grid point (◦).

same number of grid points as the central difference stencils are employed. Thus, the

order of the numerical scheme utilized as boundary closure for the viscous terms near

the outflow does not need to be as strongly reduced as for the convective terms to

stabilize the overall numerical scheme.

In order to maintain high-order boundary closures in wall-normal direction, Laible

follows an approach suggested by Zhong & Tatineni (2003). At the wall, the interior

high-order finite difference schemes (convective and viscous) are coupled with high-

order boundary closures using one-sided finite differences (figure 3.3). To ensure

stable boundary schemes, the grid is clustered near the wall according to the following

function:

yj =
arcsin (−η cos (πj/2ny))

arcsin (η)
. (3.16)

Here, j denotes the grid point index in wall-normal direction, ny is the total number

of grid points in this direction and the parameter η determines the degree of grid
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Figure 3.3: Illustration of the computational grid and the stencils implemented in the
new high-order code by Laible (Laible et al., 2008, 2009) for the inviscid terms (Ec

and Fc in equation 2.1) in wall-normal direction y at one timestep n. (◦) denotes
grid point where the spatial derivative is computed. (•) represents grid points that
are used for the calculation of the spatial derivative at grid point (◦).

stretching. Note that stretching is only applied at the wall boundary and not (like

in Zhong & Tatineni, 2003) at the wall and free-stream boundary. Applying grid

stretching only at the wall is advantageous for boundary layer simulations, since

typically a rather strong grid stretching away from the wall is employed. The free

stream does not need to be as highly resolved as the region close to the wall. The

resulting numerically unstable boundary closure at the free stream is circumvented

by enforcing the Dirichlet boundary condition (section 3.2.4), not only on the free

stream boundary point, but also at the points next to the boundary. Hence as at the

inflow, high-order one-sided finite differences are avoided at the free stream.

3.2.2 Azimuthal Discretization

The azimuthal direction in the high-order code by Laible was assumed to be periodic

and therefore transformed into Fourier space using the VFFTPK library as discussed
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in section 3.1.2. Hence, all spatial derivatives with respect to the azimuthal direction

were calculated according to equation (3.5). Moreover, all flow quantities are assumed

to be symmetric with respect to the centerline except for the azimuthal velocity w,

which is antisymmetric. Since the same library for the Fast Fourier Transformation

(FFT) as in NSCC was also implemented in the new high-order code, the definition of

the Fourier transformation follows equations (3.7) and (3.9). However, Laible applies

a different scaling to all Fourier modes with k 6= 0. In his case, these Fourier modes

have a value that is twice the magnitude of the modes defined in equations (3.7) and

(3.9). For example, the transformation into spectral space from equation (3.7) can

therefore be recast to

φ̃c
0 = F (φ)c

0 ∼
1

2(nz − 1)

[
φc

0 + 2
nz−1∑

l=1

φc
l

]
(3.17)

for the “0th” Fourier mode and

φ̃c
k = F (φ)c

k ∼ 1

(nz − 1)

[
φc

0 + 2
nz−1∑

l=1

φc
l cos

(
πkl

nz − 1

)]
(3.18)

for all higher modes with k 6= 0.

3.2.3 Simulation Strategy and Initial Condition

In this section, the strategy is explained how to obtain appropriate initial conditions

(IC) for cone simulations presented in this report. In contrast to flat-plate boundary

layers, no similarity solution exists for a cone boundary layer if the transverse cur-

vature terms are considered (Malik & Spall, 1991). Thus, a different strategy, when

compared to flat-plate simulations, has to be found to obtain an accurate IC for a

cone. This strategy is demonstrated in figure 3.4. In a precursor simulation, using a

finite volume code developed by Gross (Gross & Fasel, 2002, 2008), the steady base

flow for the entire cone geometry including the nose tip is calculated (figure 3.4a).

This finite volume code solves the Navier–Stokes equations on a generalized coordi-
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Figure 3.4: Illustration of the simulation strategy used for cone simulations: (a)
Integration domain for the precursor simulations of the steady base flow using a coarse
grid and a low-order numerical scheme. Note the nose tip of the cone is included in
this simulation. (b) Integration domain for the high-order simulations using the code
developed by Laible. Initial Condition (IC) from the precursor DNS is interpolated
on a new computational grid.

nate system. The convective fluxes are discretized using a second-order symmetric

total variation diminishing (TVD) upwind scheme while the viscous terms are calcu-

lated with a second-order accurate control volume approach. The time integration is

based on an implicit Euler. This code can accurately predict the entire steady flow

field for a cone. However, for unsteady transition simulations, the numerical scheme

is too diffusive for capturing the correct spatial development of instability waves with

a reasonable number of grid points. Therefore, a smaller part of the computational

domain from the precursor simulation is extracted for the actual transition simula-

tions, for which the high-order code developed by Laible (figure 3.4b) is employed.

The flow field of this smaller domain is then interpolated on a new computational

grid suitable for the high-order computations. Note that in this smaller domain the

shock is also included. If the high-order finite differences as described in section 3.2

were used for the calculation of the shock, strong oscillations would be introduced.

To avoid such oscillations, in the code by Laible, the order of the interior numerical

integration scheme is strongly reduced in the near-shock region.
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3.2.4 Boundary Conditions

The inflow is separated into two regions: a subsonic region (M < 1) close to the

wall and a supersonic/hypersonic region (M > 1). In the supersonic/hypersonic

region, Dirichlet conditions for u, v, w, T, p and ρ are specified (e.g. obtained from

the precursor calculation) while for the subsonic region, a non-reflecting boundary

condition is adopted as suggested by Poinsot & Lele (1992). On the cone surface,

the no-penetration (v = 0) and the no-slip (u = 0, w = 0) conditions are enforced.

The wall is set to be adiabatic for the steady base flow and temperature fluctuations

are assumed to vanish for the unsteady simulations. At the outflow, a buffer domain

technique is applied, where finite amplitude disturbances are ramped to zero (see

Meitz & Fasel, 2000). Since for the simulations presented in chapter 6, the free

stream is located above the oblique shock, Dirichlet conditions (for u, v, w, T, p, ρ)

can be enforced at this boundary.
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4. Compressible Linear Stability Theory

The spatial and temporal evolution of infinitesimal small disturbances in a boundary

layer is governed by linear stability theory (LST). In all simulations discussed in this

report, the boundary layer is forced through a hole or disturbance slot in the wall

using small disturbance amplitudes. Hence, the initial disturbance development in

the boundary layer for these simulations should follow linear stability behavior. In

order to validate whether the Navier–Stokes solvers used for such simulations can

capture the initial linear disturbance development accurately, results of the DNS

are compared to theoretical predictions of LST. Furthermore, results from LST can

also be utilized to identify possible Craik-type resonances (Craik, 1971). Some basic

concepts of LST are introduced in the following sections. The main ideas and results

of LST summarized in this chapter are obtained from Mack (1969).

4.1 Characterization of Disturbances

In linear stability theory (LST), disturbances have the form

φ′ (x, y, z, t) = φ̂(y)exp (i (αx+ βz − ωt)) . (4.1)

This is a general equation for a plane wave travelling at a specific wave angle ψ with

respect to the streamwise direction x. The disturbance amplitude φ̂ is only dependent

on the wall-normal direction y. The wave angle is given by

ψ = arctan

(
β

αr

)
, (4.2)

with

αr =
2π

λx

and β =
2π

λz

(4.3)

as streamwise and spanwise/azimuthal wavenumbers, respectively. The streamwise

wavenumber αr is the real part of the complex wavenumber α in equation (4.1). If
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the streamwise wavenumber α is assumed to be complex

α = αr + iαi , (4.4)

disturbances grow spatially with αi as streamwise amplification rate. In the case

of spatial LST, the disturbance frequency ω is real while for temporal LST, where

disturbances grow temporally, ω is complex and α is real. Disturbances with a neg-

ative value of αi (positive ωi) experience streamwise (temporal) amplification while

for positive values of αi (negative ωi), disturbances decay. Disturbances that neither

grow nor decay are referred to as neutral. As already indicated in equation (4.3),

the spanwise or azimuthal wavenumber β is always real. For a cone, the spanwise

wavenumber β is dependent on the so-called azimuthal mode number kc, which rep-

resents the ratio of the cone circumference and the azimuthal wave length λz at the

cone surface. Figure 4.1 illustrates that for kc = 1 the azimuthal wave length λz

zλ   : 2   rπ

zλ zλ

πr

zλ
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Figure 4.1: Definition of azimuthal mode number and azimuthal wave length for a
cone.

corresponds to the cone circumference. In general for a cone, the azimuthal wave

length λz can be calculated from

λz (x) =
2πr (x)

kc

. (4.5)

The cone radius r is a function of the streamwise direction x

r (x) = xsin (θc) . (4.6)
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Note that in the framework of LST, kc can only have integer values and consequently,

only a discrete set of azimuthal wavenumbers β can exist. This is in contrast to a flat

plate (with infinite dimension in z-direction), where the spanwise wavenumber β can

in principle take any value.

The streamwise and spanwise/azimuthal wavenumbers are nondimensionalized us-

ing the viscous length scale L∗
e,

α = α∗L∗
e and β = β∗L∗

e . (4.7)

The nondimensionalization of the streamwise direction x with L∗
e results in the local

Reynolds number as introduced by equation (2.10)

Rx =
x∗

L∗
e

=

√
U∗

e x
∗

ν∗e
.

For the frequency, there are two commonly used nondimensionalizations, which are

as follows:

ω = 2π
f ∗L∗

e

U∗
e

and F =
ω

Rx

= 2π
f ∗ν∗e
U∗

e
2 . (4.8)

In the literature, F is often called “reduced” frequency and in contrast to ω, is

independent of the viscous length scale L∗
e. If the boundary layer edge conditions are

constant, a constant value of F represents a constant dimensional frequency f ∗. This

is not the case for ω since this frequency is proportional to
√
x.

4.2 Linearization of the Governing Equations

For the derivation of the linear stability equations, all flow quantities are decomposed

into a mean flow (denoted by capital letters) and a disturbance component (denoted

by ′). The mean flow is assumed to be parallel (V = 0, U = U (y) and T = T (y))
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and two-dimensional (W = 0):

u = U (y) + u′ , (4.9a)

v = v′ , (4.9b)

w = w′ , (4.9c)

p = 1 + p′ , (4.9d)

T = T (y) + T ′ , (4.9e)

ρ =
1

T (y)
+ ρ′ . (4.9f)

Note that in contrast to the Navier–Stokes equations for the DNS (equation 2.1),

pressure is nondimensionalized by its boundary edge value p∗e instead of the dynamic

pressure and the mean-flow pressure is assumed to be constant in wall-normal di-

rection (boundary-layer assumption). The velocities are nondimensionalized by U∗
e ,

temperature by T ∗
e , density by ρ∗e and viscosity by µ∗

e. As length scale, L∗
e (equa-

tion 2.8) is used. Furthermore, it is assumed that the dynamic viscosity and thermal

conductivity are only functions of temperature. This is appropriate since here a calor-

ically perfect gas with constant Prandtl number Pr = 0.71 is investigated and the

viscosity is given by Sutherland’s law. A Taylor series approximation for the viscosity

and conductivity, where all higher-order terms for the temperature disturbance are

neglected, yields

µ = µ (T ) +
dµ (T )

dT
T ′ and k = k (T ) +

dk (T )

dT
T ′ . (4.10)

The decompositions in equations (4.9) and (4.10) are then substituted into the

compressible Navier–Stokes equations (for a flat plate here, since all curvature and

divergence terms are neglected for the linear stability analysis). If the resulting equa-

tions are linearized and the mean flow is subtracted, the disturbance equations for

the continuity, x-momentum, y-momentum, z-momentum and energy are obtained

(Mack, 1969; Balakumar & Malik, 1992):
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continuity

∂ρ′

∂t
+

1

T

(
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)
+ v′

d (T−1)

dy
+ U

∂ρ′

∂x
= 0 , (4.11)

x-momentum

(
∂u′

∂t
+ U

∂u′

∂x
+ v′

dU

dy

)
= − T

γM2
e

∂p′

∂x
+

T

Rx

[
µ

(
∂2u′

∂x2
+
∂2u′

∂y2
+
∂2u′

∂z2

)

+
µ

3

(
∂2u′

∂x2
+

∂2v′

∂x∂y
+
∂2w′

∂x∂z

)
+
dµ

dT

dT

dy

(
∂u′

∂y
+
∂v′

∂x

)

+
dµ

dT

(
d2U

dy2
T ′ +

dU

dy

∂T ′

∂y

)
+
d2µ

dT 2

dT

dy

dU

dy
T ′

]
, (4.12)

y-momentum

(
∂v′

∂t
+ U

∂v′

∂x

)
= − T

γM2
e

∂p′

∂y
+

T

Rx

[
µ

(
∂2v′

∂x2
+
∂2v′

∂y2
+
∂2v′

∂z2

)

+
µ

3

(
∂2u′

∂x∂y
+
∂2v′

∂y2
+
∂2w′

∂y∂z

)
+
dµ

dT

(
2
dT

dy

∂v′

∂y
+
dU

dy

∂T ′

∂x

)

− 2

3

dµ

dT

dT

dy

(
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)]
, (4.13)

z-momentum

(
∂w′

∂t
+ U

∂w′

∂x

)
= − T

γM2
e

∂p′

∂z
+

T

Rx

[
µ

(
∂2w′

∂x2
+
∂2w′

∂y2
+
∂2w′

∂z2

)

+
µ

3

(
∂2u′

∂x∂z
+

∂2v′

∂y∂z
+
∂2w′

∂z2

)
+
dµ

dT

dT

dy

(
∂w′

∂y
+
∂v′

∂x

)]
, (4.14)

energy

(
∂T ′

∂t
+ U

∂T ′

∂x
+ v′

dT

dy

)
= − (γ − 1)T

(
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)

+
γT

PrRx

[
µ

(
∂2T ′

∂x2
+
∂2T ′

∂y2
+
∂2T ′

∂z2

)
+
dµ

dT

d2T

dy2
T ′ + 2

dµ

dT

dT

dy

∂T ′

∂y
+
d2µ

dT 2

(
dT

dy

)2

T ′

]

+
γ(γ − 1)TM2

e

Rx

[
2µ
dU

dy

(
∂u′

∂y
+
∂v′

∂x

)
+
dµ

dT

(
dU

dy

)2

T ′

]
. (4.15)
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The equation of state is

p′ =
T ′

T
+ ρ′T . (4.16)

The boundary conditions are

y = 0 : u′ = 0, v′ = 0, w′ = 0, and T ′ = 0 ,

y → ∞ : all disturbances are bounded .

These equations further simplify if their solutions are limited to plane harmonic

waves in the form of equation 4.1. The disturbance quantities are then replaced by




u′

v′

w′

ρ′

T ′

p′




=




û
αv̂
ŵ
ρ̂

T̂
p̂




exp (i (αx+ βz − ωt)) . (4.18)

Hence, the linearized Navier–Stokes equations can be recast to the following eigen-

value problem:

continuity

i (Uα− ω) ρ̂+
1

T

(
iαû+ α

dv̂

dy
+ iβŵ

)
+
d(T−1)

dy
αv̂ = 0 , (4.19)

x-momentum

i (Uα− ω) û+
dU

dy
αv̂ = −iTαp̂

γM2
e

+
T

Rx

[
µ

(
d2û

dy2
−
(
α2 + β2

)
û

)

+
µ

3

(
iα2dv̂

dy
− α2û− αβŵ

)
+
dµ

dT

dT

dy

(
dû

dy
+ iα2v̂

)

+
dµ

dT

(
d2U

dy2
T̂ +

dU

dy

dT̂

dy

)
+
d2µ

dT 2

dT

dy

dU

dy
T̂

]
, (4.20)

y-momentum

i (Uα− ω) v̂ = − T

αγM2
e

dp̂

dy
+

T

Rx

[
µ

(
d2v̂

dy2
−
(
α2 + β2

)
v̂

)
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+
µ

3

(
i
dû

dy
+
d2v̂

dy2
+ i

β

α

dŵ

dy

)
+
dµ

dT

(
2
dT

dy

dv̂

dy
+ i

dU

dy
T̂

)

−2

3

dµ

dT

dT

dy

(
iû+

dv̂

dy
+ i

β

α
ŵ

)]
, (4.21)

z-momentum

i (Uα− ω) ŵ = −iTβp̂
γM2

e

+
T

Rx

[
µ

(
d2ŵ

dy2
−
(
α2 + β2

)
ŵ

)

+
µ

3

(
iαβ

dv̂

dy
− αβû− β2ŵ

)
+
dµ

dT

dT

dy

(
dŵ

dy
+ iα2v̂

)
, (4.22)

energy

i (Uα− ω) T̂ +
dT

dy
αv̂ = − (γ − 1)T

(
iαû+ α

dv̂

dy
+ iβŵ

)

+
γT

PrRx

[
µ

(
d2T̂

dy2
−
(
α2 + β2

)
T̂

)
+
dµ

dT

(
d2T

dy2
T̂ + 2

dT

dy

dT̂

dy

)
+
d2µ

dT 2

(
dT

dy

)2

T̂

]

+
γ(γ − 1)TM2

e

Rx

[
2µ
dU

dy

(
dû

dy
+ iα2v̂

)
+
dµ

dT

(
dU

dy

)2

T̂

]
, (4.23)

equation of state

p̂ =
T̂

T
+ ρ̂T. (4.24)

The boundary conditions are

y = 0 : û = 0, v̂ = 0, ŵ = 0, and T̂ = 0 ,

y → ∞ : all eigenfunctions are bounded .

4.3 Inviscid Theory

To simplify the numerical procedure for solving the eigenvalue problem introduced

above, Mack (1969) applied a coordinate transformation to the linear stability equa-

tions. For the inviscid case (Rx → ∞), this transformation is especially advanta-

geous because then the three-dimensional eigenvalue problem can be reduced to a
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U

Figure 4.2: Illustration of the tilde coordinate system introduced by Mack (1969)
in order to reduce the the three-dimensional inviscid eigenvalue problem to a two-
dimensional form. Here, in contrast to the more general approach of Mack (1969),
only a two-dimensional boundary layer is considered.

two-dimensional one. Figure 4.2 illustrates the rotated coordinate system (x̃, y, z̃) ac-

cording to Mack. In this coordinate system, the x̃-axis is in the direction of the wave

propagation (perpendicular to the wave front) while the x-axis is in the direction of

the free stream. The angle between the x- and x̃-axes is the wave angle ψ. Since the

z̃-axis is along the wave front of the harmonic wave, equation (4.1) reduces to

φ′ (x̃, y, t) = φ̂(y)exp
(
i
(
|~k|x̃− ωt

))
, (4.26)

with

x̃ = cos (ψ)x+ sin (ψ) z , (4.27)

and

cos (ψ) =
αr

|~k|
and sin (ψ) =

β

|~k|
, (4.28)

where ~k represents the wavenumber vector

~k =

[
αr

β

]
. (4.29)

Hence, in the stability equations, all derivatives of the disturbance quantities are zero

with respect to z̃. Note, for convenience, in equation (4.26) and in the following

discussion the temporal approach of LST is used. The disturbance frequency ω is
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therefore assumed to be complex and α is real (α = αr)

ω = ωr + iωi = αr

(
crph,x + iciph,x

)
, (4.30)

with crph,x denoting the phase speed in streamwise direction (x) and αrc
i
ph,x represent-

ing the temporal amplification rate.

The transformation relations for the eigenfunctions defined by equation (4.18)

between both coordinate systems are as follows:

˜̂u = û+ tan (ψ) ŵ , (4.31a)

˜̂v = v̂ , (4.31b)

˜̂w = −tan (ψ) û+ ŵ , (4.31c)

˜̂p = p̂ , (4.31d)

˜̂
T = T̂ , (4.31e)

˜̂ρ = ρ̂ . (4.31f)

4.3.1 Neutral Solutions

Dropping the viscous terms and transforming the stability equations into the new

coordinate system leads to the two-dimensional inviscid stability equations. Mack

(1969) states that there are several forms of the inviscid equations that are helpful

to address different properties of the inviscid case. Lees & Lin (1946), for example,

derived the compressible version of the Rayleigh equation

d

dy


(U − cph,x)

d˜̂v
dy

− dU
dy

˜̂v
(
1 − M̃2

rel

)
T


 =

|~k|2
T

(U − cph,x) ˜̂v , (4.32)

where M̃rel denotes the relative Mach number

M̃rel =
U − cph,x√

T
M̃e , (4.33)
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and M̃e is the Mach number in the tilde coordinate system

M̃e = Mecos (ψ) . (4.34)

The physical meaning of M̃rel can be better understood if neutral disturbances are

considered (ciph,x = 0). In this case, M̃rel represents the local Mach number of the

mean flow relative to the phase velocity in the direction of the wave propagation

M̃rel =
U∗ (y) − c∗ph,x

a∗ (y)
cos (ψ) . (4.35)

Moreover, M̃rel is a function of the wall-normal direction y.

Equation (4.32) is a second-order differential equation for the wall-normal velocity

eigenfunction ˜̂v with two boundary conditions:

˜̂v (0) = 0 and ˜̂v bounded as y → ∞ . (4.36)

Using

ξ (y) =
1(

1 − M̃2
rel

)
T
, (4.37)

equation (4.32) can be rewritten in the following form (Henningson & Schmid, 2001)

d

dy

[
ξ (y)

d˜̂v

dy

]
=




d
dy

(
ξ (y) dU

dy

)

U − cph,x

+
|~k|2
T


 ˜̂v . (4.38)

In this form, it is straight forward to recognize the singularity for U(yc) = cph,x

(M̃rel = 0) in equation (4.38) for a neutral disturbance. The wall-normal position yc

of the singularity is called “critical layer”. A solution for equation (4.38) according

to Frobenius’ method can only exist at yc if the singularity is regular. Therefore, the

quantity
d

dy

(
ξ (y)

dU

dy

)
=

d

dy

(
1

T

dU

dy

)
(4.39)

has to vanish at the critical layer. The wall-normal position (critical layer), where this

quantity has a value zero, is also called “generalized inflection point”. Furthermore, as
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proven by Lees & Lin (1946), a generalized inflection point somewhere within

the boundary layer is a necessary and sufficient condition for the existence

of a neutral, inviscid subsonic disturbance. The terminology “subsonic” in the

previous statement stems from a classification of neutral disturbances based on M̃rel

at the boundary layer edge (U = T = 1 for y ≥ δ) introduced by Lees & Lin (1946):

|M̃rel (y ≥ δ) | < 1

(
cph,x > 1 − 1

M̃e

)
: subsonic , (4.40a)

|M̃rel (y ≥ δ) | = 1

(
cph,x = 1 − 1

M̃e

)
: sonic , (4.40b)

|M̃rel (y ≥ δ) | > 1

(
cph,x < 1 − 1

M̃e

)
: supersonic . (4.40c)

In addition, Lees & Lin (1946) could show that a generalized inflection point at

a wall-normal position yc greater than y0, where y0 is the point at which

cph,x = 1 − 1
M̃e

, is a necessary condition for the existence of an amplified

disturbance. The amplification rate is related to the difference in phase speed

cph,x (yc) − cph,x (y0); that is, as cph,x (yc) → cph,x (y0), αrc
i
ph,x → 0. This is however

only true for a particular type of disturbances, the so-called “first-mode” disturbances,

which are an extension of the incompressible Tollmien-Schlichting instability waves.

Further information on amplified disturbances can be found in section 4.3.2.

Mack (1969) first realized that different types of disturbances exist, which are

solutions of the inviscid stability problem. If the compressible version of the Rayleigh

equation (equation 4.32) is recast in terms of the disturbance pressure eigenfunction

instead of wall-normal velocity

d2 ˜̂p

dy2
− d

dy

[
ln
(
M̃2

rel

)] d ˜̂p

dy
− |~k|2

(
1 − M̃2

rel

)
˜̂p = 0 , (4.41)

one can see that this equation changes its behavior when (1− M̃rel) changes its sign.

If the second term on the left-hand side is neglected (which is possible for large |~k|2

according to Mack, 1969), the remaining equation is elliptical in nature for M̃rel < 1

and a wave equation for M̃rel > 1. Hence, multiple solutions can exist when M̃rel > 1
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(“region of supersonic relative flow”) somewhere in the boundary layer since there is

an infinite sequence of wave lengths which satisfy the boundary conditions. Moreover,

Lees & Lin (1946) provided the theorem that there is only a unique wavenumber

corresponding to one phase speed for the neutral subsonic disturbance if

M̃rel < 1 throughout the entire boundary layer.

Mack (1969) termed the multiple solutions of the inviscid stability problem modes.

The different modes can be distinguished by the number of zeros in their pressure

eigenfunction. If there is no zero in the pressure eigenfunction of a neutral subsonic

disturbance, the disturbance is a so-called “first mode” while one zero in the pres-

sure eigenfunction indicates a “second mode”. In general, an nth mode of a neutral

subsonic disturbance has n− 1 zeros in its pressure eigenfunction. For insulated wall

boundary layers, the second mode and the higher modes only appear for a free-stream

Mach number of 2.2 and higher.

A further consequence of a region of supersonic relative flow (M̃rel > 1) in the

boundary layer is the existence of another class of disturbance waves that are inde-

pendent of the generalized inflection point. These disturbances are characterized by

having phase velocities in the range

1 ≤ cph,x ≤ 1 +
1

M̃e

(4.42)

and were first discovered by Mack (1969). For a phase velocity greater than unity,

equation (4.38) does not have a singularity since the streamwise velocity U has a

maximal value of one in the free stream (U (y ≥ δ) = 1). Because of the absence of a

singularity and therefore a critical layer, Mack (1969) referred to these disturbances

as “regular neutral solutions”.

A summary of all neutral, plane disturbances for the inviscid stability problem

of a boundary layer is presented in figure 4.3. As already mentioned before (equa-

tions 4.40), disturbances can be classified according to their phase velocity. There

are mainly two different groups of disturbances. Disturbances that result from the
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layer modes
(discrete spectrum)

free−stream
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Figure 4.3: Classification of neutral, plane disturbances according to their phase speed
cph,x.

boundary layer and are therefore commonly termed “boundary-layer modes” (dis-

crete spectrum) and disturbances that are travelling in the free stream (continu-

ous spectrum). The boundary-layer modes consist of the supersonic, subsonic and

regular disturbances as discussed by Mack (1969) while the free-stream modes are

of acoustical, entropic and vortical nature. “Slow” acoustic waves have the phase

speed cph,x = 1 − 1/M̃e and propagate upstream relative to the free stream. En-

tropy and vorticity waves propagate with the free stream and “fast” acoustic waves

(cph,x = 1 + 1/M̃e) travel downstream relative to the free stream.

4.3.2 Amplified and Damped Solutions

The previous section introduced the main classes of neutral disturbances for a high-

speed boundary layer. The primary interest of linear stability theory, however, is on

amplified disturbances since these disturbances will eventually transition the flow to

turbulence. Figures 4.4a and 4.4b (all data presented in the figures of this chapter are

digitized from Mack, 1969) show the real and imaginary part of the complex eigen-

value crph,x + iciph,x as a function of the streamwise wavenumber for two-dimensional

disturbances. These diagrams are typical for low and moderate supersonic Mach num-

bers up to Mach 4.4 (Mack, 1969). The streamwise wavenumbers of neutral subsonic

disturbances and neutral regular disturbances are also included in this figure. αsn
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Figure 4.4: Complex phase speed of two-dimensional disturbances as a function of
streamwise wavenumber αr for Me = 3.8, insulated wall and free-stream temperature
T ∗

e = 80K: (a) imaginary part ciph,x, (b) real part crph,x. Reproduced from Mack
(1969), figure 11.6.

denotes the streamwise wavenumber of the neutral subsonic mode n. For example,

a first-mode neutral subsonic disturbance has the streamwise wavenumber αs1 and

a second-mode neutral subsonic disturbance has αs2 as its streamwise wavenumber.

A similar nomenclature is used by Mack for the regular neutral disturbances. αr1

represents a first-mode regular neutral solution while αrn would denote a nth-mode

regular neutral solution. The distinction between different regular neutral modes is

according to the zeros (phase change) in the pressure eigenfunction as discussed for

the subsonic neutral solutions in the previous section.

The eigenvalues for ciph,x 6= 0 in figure 4.4a lie on two separate curves and therefore,

form two distinct “families” of solutions. Mack (1969) states that it is easier to discuss

the inviscid amplified or damped solutions in terms of these families than in terms of

modes as for the neutral solutions from the previous section. He distinguishes between

different families according to their origin in the complex phase speed diagram. For

example in figure 4.4a, the solid curve originates from αr = 0 with a phase speed of

cph,x = 1− 1/Me while the dashed curve starts at αr1 with cph,x = 1. Since the mode

characteristics change along these eigenvalue curves and are often not well defined, it
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is not possible to assign one curve to a particular mode. For example, on the dashed

curve between αr1 and αs2 in figure 4.4a, the pressure eigenfunctions for the different

eigenvalues change from a “first-mode regular neutral”-type eigenfunction with zero

phase change to a “second-mode subsonic neutral”-type eigenfunction with one phase

jump. Because of this phase change, typical for second-mode neutral solutions (reg-

ular and subsonic), Mack (1969) terms the amplified disturbances between αr1 and

αs2 “second-mode amplified solutions”. The solutions on the solid curve starting at

αr = 0 are called “first-mode amplified solutions” in the region between αr = 0 and

αs1 and “second-mode damped solutions” near the minimum between αr1 and αs2.

Again, this distinction is based on the phase change in the pressure eigenfunction of

the different solutions.

An important result of Mack’s numerical investigations is that first-mode amplified

solutions have a phase speed cph,x between the phase speed for a sonic disturbance

cph,x(y0) = 1 − 1/M̃e and the phase speed at the critical layer (generalized inflection

point) cph,x(yc), hence

cph,x(y0) < cph,x < cph,x(yc) . (4.43)

As a consequence of this restriction, the amplification rate of first-mode amplified

solutions is directly related to the difference in phase speed ∆cph,x = cph,x(yc) −
cph,x(y0). Figure 4.5a shows cph,x(yc) and cph,x(y0) as a function of edge Mach number

Me for several different free-stream temperatures T ∗
e . For all curves, the difference

∆cph,x has a minimum near Me = 1.6 while for larger Mach numbers the difference

increases and finally levels off. The maximal temporal amplification rate (αrc
i
ph,x)max

for two-dimensional first-mode amplified disturbances exhibits a very similar behavior

with a minimum near Mach 1.5. The influence of the phase difference ∆cph,x on the

amplification rate of first-mode disturbances suggests that anything that changes

cph,x(yc) or cph,x(y0) affects the amplification rate of first-mode disturbances. For

example, by increasing the free-stream temperature and keeping the wall insulated,
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Figure 4.5: Effect of free-stream temperature on the stability behavior of a super-
sonic/hypersonic boundary layer with insulated wall: (a) Phase velocities as function
of Mach number Me, (b) maximum amplification rates of two-dimensional first- and
second-mode amplified disturbances for different Mach numbers. Reproduced from
Mack (1969), figures 11.13 and 11.14.

the curve for cph,x(yc) moves closer to cph,x(y0) (figure 4.5a). Note that cph,x(y0) = 1−
1/M̃e is not dependent on the free-stream temperature and therefore, stays constant.

The maximal amplification rate as a function of the free-stream temperature is de-

picted in figure 4.5b for several Mach numbers. Clearly, as expected from figure 4.5a,

an increase in free-stream temperature reduces the temporal amplification rate of first-

mode amplified disturbances. Also shown in figure 4.5b are the maximal amplification

rates for second-mode amplified disturbances. The effect of the free-stream tempera-

ture on a second-mode amplified disturbance can be either stabilizing or destabilizing

depending on the Mach number. Since second-mode neutral disturbances (regular or

subsonic) are primarily a result of the supersonic relative flow region (M̃rel > 1), the

amplification rates of second-mode amplified disturbances are mainly influenced by

the wall-normal extent of this region. Therefore, anything that changes the thickness

of the supersonic relative flow region also affects second-mode (and higher) amplified

disturbances. Figure 4.5b further indicates that for two-dimensional disturbances,

second-mode amplified solutions have always the highest amplification rates when

compared to first-mode amplified solutions for Mach numbers Me ≥ 2.2.
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So far, only the stability behavior of two-dimensional disturbances have been dis-

cussed in this section. Results for three-dimensional disturbances can be obtained

from the two-dimensional stability equations in the tilde coordinate system from

figure 4.2. In this coordinate system, the Mach number M̃e of the mean flow in direc-

tion of the wave propagation is defined by equation (4.34) with ψ as the wave angle

(M̃e = Mecos(ψ)). The change of the Mach number M̃e with respect to the wave angle

ψ has direct implications on first-mode and second-mode amplified disturbances. The

phase speed of a sonic disturbance cph,x(y0) = 1−1/M̃e decreases as ψ increases from

0◦ to 90◦ while the phase speed of the critical layer cph,x(yc) remains unchanged since

the mean velocity and temperature profiles are fixed. Consequently, the difference

∆cph,x = cph,x(yc)− cph,x(y0) increases and this leads to a destabilization of first-mode

amplified disturbances. At the same time, the wall-normal thickness of the super-

sonic relative flow region decreases with M̃e (equation 4.33) yielding a stabilization

of second-mode and higher-mode amplified disturbances. Both trends are illustrated

in figure 4.6 for a Mach 8.0 boundary layer with an insulated wall and a free-stream

temperature of T ∗
e = 50K. This figure shows the temporal amplification rate as a

function of the streamwise wavenumber. For two-dimensional waves, the amplified

region of the first three modes are merged (solid line) and second-mode amplified

disturbances are most unstable. With increasing wave angle ψ, first-mode ampli-

fied disturbances are destabilized until they reach their highest amplification rate at

about ψ = 56◦. Since the streamwise wavenumber αr approaches zero for ψ → 90◦,

the decrease in αr eventually outweighs the increase in amplification rate due to the

increase of cph,x(yc) − cph,x(y0) and therefore, αrc
i
ph,x starts to decrease with further

increase of ψ (graph for ψ = 60◦ in figure 4.6). As expected, the second-mode and

third-mode amplified solutions are stabilized with increasing ψ. At about ψ = 45◦,

only the first two unstable regions are still visible while at ψ = 60◦, the second-mode

unstable region has completely vanished.
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4.4 Viscous Theory

In order to investigate the influence of viscous effects on the stability behavior of a

high-speed boundary layer the complete linearized Navier–Stokes equations (equa-

tion 4.19 to 4.24) have to be solved numerically. As for the inviscid case, Mack (1969)

transformed equations (4.19) to (4.24) into the rotated (tilde) coordinate system il-

lustrated in figure 4.2. In this coordinate system, the governing equations reduce to a

“nearly two-dimensional form”. Despite the existence of the z̃-momentum equation,

the three-dimensional form of the governing equations differs only from the two-

dimensional form in a dissipation term in the energy equation involving the velocity

component parallel to the wave front (w̃′). Mack (1969) showed that, by neglecting

this dissipation term, only a small error in the calculation of the maximal temporal

amplification rate for oblique disturbances is introduced, while the computational

cost is considerable reduced since only two-dimensional equations have to be solved.

Today, neglecting this dissipation term and therefore, reducing the three-dimensional

problem to a two-dimensional form is not necessary since the computational resources
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increased significantly in the last 40 years.

The terminology introduced for the inviscid case is also used for the viscous theory.

In particular, a first-mode amplified solution of the inviscid stability problem has

a viscous counterpart, which is termed “viscous first-mode amplified disturbance”

in this section. The same convention is also employed for second-mode amplified

disturbances. The distinction between viscous first-mode and viscous second-mode

disturbances is again based on the phase change in the pressure eigenfunction as

explained in section 4.3.1. However, for the viscous problem, it is even harder to assign

a disturbance a particular mode characteristic, especially for high Mach numbers.

In the following sections, the main results of viscous linear stability theory are

summarized.

4.4.1 Amplified and Damped Solutions

Mack (1969) reports that, depending on the Mach number, the wave angle and the

mode type (first or second mode) of the disturbance, viscosity can have both, a

stabilizing and destabilizing effect. In figure 4.7, neutral stability curves for two-

dimensional disturbances are plotted against 1/Rx for different Mach numbers from

1.6 to 3.8. The streamwise wavenumbers αs1 for two-dimensional neutral subsonic

disturbances at 1/Rx = 0 denote the inviscid limit for the different Mach numbers.

At all Mach numbers, the neutral stability curves in figure 4.7 approach the in-

viscid limit for Rx → ∞. For the inviscid case, the region between αr = 0 and

αs1 includes first-mode amplified solutions as discussed for Mach 3.8 in figure 4.4a.

Hence, it can be concluded that the neutral stability curves in figure 4.7 define the

boundary of the viscous counterpart of a first-mode amplified region. At Mach 1.6,

for low Reynolds numbers, the unstable region is at higher streamwise wavenumbers

than the inviscid limit. Thus, for this Mach number and at low Reynolds numbers,

viscosity destabilizes disturbances with streamwise wavenumber larger than αs1 and
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different Mach numbers (insulated wall and free-stream temperature T ∗

e = 80K).
Reproduced from Mack (1969), figure 12.2.

stabilizes disturbances for lower streamwise wavenumber. This destabilizing effect

decreases with increasing Mach number. At Me = 3.8, for example, viscosity only

stabilizes viscous first-mode amplified disturbances at all finite Reynolds numbers.

Figure 4.8 provides a clearer picture of the influence of viscosity on the stability

behavior of viscous first (figure 4.8a) and second-mode (figure 4.8b) amplified two-

dimensional disturbances. In this figure, the maximal temporal amplification rate

(αrc
i
ph,x)max is plotted against local Reynolds number Rx for several Mach numbers.

As explained in figure 4.7, at low supersonic Mach numbers (Me = 1.6, 2.2, and

2.6), viscosity has a destabilizing effect on viscous first-mode disturbances for low

Reynolds numbers in figure 4.8a. At Mach 3.0, this effect disappears and viscosity

stabilizes for all finite Reynolds numbers. Viscous second-mode amplified disturbance

(figure 4.8b), on the other hand, are always stabilized by viscosity.

The destabilizing effect of viscosity on first-mode disturbances decreases with in-

creasing wave angle. Therefore, three-dimensional first-mode disturbances are less

destabilized than two-dimensional first-mode disturbances. Figure 4.9 shows the
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maximal temporal amplification rate of inviscid and viscous first and second-mode

amplified solutions as a function of edge Mach number. The thin lines represent the

inviscid limit. While inviscid, two-dimensional second-mode amplified disturbances

are always more amplified than two-dimensional, inviscid first-mode disturbances for

Mach numbers larger than 2.2; this is not the case if three-dimensional, inviscid first-

mode amplified disturbances are considered. The curve for two-dimensional, inviscid

second-mode disturbances intersects the curve for three-dimensional, inviscid first-

mode solutions at about Me = 2.66. Viscosity strongly reduces the amplification

rates of second-mode amplified disturbances. Below of about Me = 3.0, first-mode

disturbances become destabilized by viscosity. Since the destabilizing influence of

viscosity decreases with increasing obliqueness, the wave angle decreases for viscous

first-mode amplified disturbances for decreasing Mach numbers. The Mach number

where the curve for two-dimensional, viscous second-mode solutions intersects with

the curve for viscous first-mode solutions is approximately at Me = 4.0.
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4.4.2 Eigenvalue Diagram

The final figure discussed in this chapter (figure 4.10) demonstrates the complex

phase speed crph,x + iciph,x of two-dimensional disturbances as a function of stream-

wise wavenumber αr for the viscous linear stability problem at Mach number 3.8.

The inviscid limit from figure 4.4 is also included for comparison. Recent studies

of compressible linear stability theory (Fedorov, 2003; Tumin, 2007) introduced new

concepts and terminology that can be explained using figure 4.10.

The dispersion relation in figure 4.10a is very similar to the inviscid case although

the local Reynolds number is low (Rx = 850). There are two solutions with one

solution originating from the slow acoustic wave spectrum cph,x = 1 − 1/Me and the

other originating from the fast acoustic wave spectrum cph,x = 1 + 1/Me. These are

the viscous counterparts of the αr = 0 family and the αr1 family of solutions from

figure 4.4. Fedorov (2003) and Tumin (2007) denote the family of solutions from the

slow acoustic wave spectrum “slow mode” or “mode S” and consequently, the family
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e = 80K: (a) real part crph,x, (b) imaginary part ciph,x. Reproduced from Mack
(1969), figure 12.17.

of solutions from the fast acoustic wave spectrum “fast mode” or “mode F”. This

notation will also be used throughout this report.

The phase speed of mode S and mode F change with streamwise wavenumber αr

and coincide at about αr = 0.3, which is called point of “synchronism” (Fedorov &

Khokhlov, 2002). Any point where two families of solutions coincide in their phase

speed crph,x is termed “synchronism” by Fedorov (2003) and Tumin (2007). Hence, for

example, mode S is synchronized with the slow acoustic wave spectrum at αr = 0.0,

while mode F is synchronized with the fast acoustic wave spectrum for the same

streamwise wavenumber. The “synchronism” mechanism between mode S and mode

F at αr = 0.3 leads to the amplification of one of those modes and produces for the

current Mach number (Me = 3.8) the second mode unstable region. Figure 4.10b

shows ciph,x versus the streamwise wavenumber αr for both modes at two different

local Reynolds numbers and for the inviscid case. At Rx = 850, mode S contains

the viscous first-mode amplified solutions and the viscous second-mode amplified

solutions while mode F is damped throughout the entire wavenumber regime. At

Rx = 1500, the picture changes and mode S contains only the viscous first-mode

amplified solution while mode F, which is not shown, develops into a viscous second-
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mode amplified disturbance, just as predicted by the inviscid theory. If the Reynolds

number is further increased the curves for mode S and mode F approach the inviscid

limit.

As a final conclusion for this chapter, it is important to note that there exists a

misunderstanding in the research comunity about first-mode and second-mode un-

stable regions. As discussed for figure 4.10b, both regions are not always a result of

two amplified independent families of disturbances (mode S and mode F). Even for

the inviscid case at high Mach numbers, the second-mode unstable region (and even

higher-mode unstable regions) can be contained within one family of solutions (the

family originating from cph,x = 1 − 1/Me). This fact, for example, is illustrated in

figure 4.6 (for 0 deg) of the last section.
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5. Transition to Turbulence Via Oblique Breakdown in a

Flat-Plate Boundary Layer at Mach 3

In a recent series of numerical studies Mayer et al. (2007) and Mayer & Fasel (2008)

showed that oblique breakdown might have been present in the experiments by Kosi-

nov and co-workers (Kosinov et al., 1994) and suggested that oblique breakdown

might be the most dominant nonlinear mechanism (Mayer et al., 2009a) for super-

sonic boundary layers. However, a nonlinear mechanism is only relevant for the tran-

sition process if this mechanism can indeed completely transition a laminar boundary

layer to turbulence. Hence, the following chapter discusses the final question: Does

oblique breakdown lead to a fully developed turbulent boundary layer? In this chap-

ter, the entire transition path initiated by a pair of oblique time-harmonic waves at

low amplitudes is studied in detail. The flow conditions for this study are explained in

section 5.1. The forcing amplitudes are low enough so that the early disturbance de-

velopment can be compared to linear stability theory (section 5.2). The known origin

and characteristics of the disturbances introduced facilitate a more reliable interpre-

tation of the results at the later nonlinear stages. In section 5.3, the characteristics of

the oblique breakdown mechanism are studied for the early and late nonlinear stages.

Finally, in section 5.4, it is assessed whether a fully turbulent flow can be reached

and sustained.

5.1 Physical Problem and Computational Setup

The simulations in this chapter are a continuation of the earlier studies by Mayer

(2004) and Husmeier et al. (2005) of flat-plate boundary layer at Mach 3. The physical

conditions of the simulations match the Princeton wind-tunnel conditions (Graziosi

& Brown, 2002): the unit Reynolds number formed with the free-stream velocity

and free-stream viscosity at the inflow is Re = 2.181 × 106m−1 and the free-stream
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temperature is T ∗
∞ = 103.6K.

Figure 5.1a illustrates the computational setup for all simulations discussed in

this chapter. The earlier simulation by Mayer (2004) and Husmeier et al. (2005) is

denoted as CASE 1. CASE 3 and 4 are the main focus of this chapter and CASE 2,

5, 6 & 7 are used as grid, domain height and domain width studies. The overall

resolution increases from CASE 1 to CASE 7. An example for the grid of CASE 3

& 4 is shown in figure 5.1b. The grid is clustered in the streamwise direction using

a fifth-order polynomial (figure 5.1c) and in the wall-normal direction using a third-

order polynomial (figure 5.1e). The computational grid in physical space consists of

a total of roughly 212 million grid points for CASE 3 & 4 (see table 5.1 for the other

cases). The inflow of the domain for all cases is located at x∗0 ≃ 0.258m downstream

of the leading edge of the plate, whereas the outflow ranges from approximately 11.3

to 14.5 streamwise wave lengths λx of the oblique fundamental disturbance waves

in the linear regime, i.e. x∗L ≃ 1.145m for CASE 3 & 4. The domain height for

CASE 3 & 4 is chosen as y∗H ≃ 0.030m ≈ 5 boundary layer thicknesses δ (laminar)

at the outflow, such that even with the high increase in boundary layer thickness

caused by the transition process no turbulent flow structures reach the free-stream

boundary. Pseudo-spectral discretization using Fourier modes (Canuto et al., 1988)

is employed in the spanwise direction of the computations. For CASE 1-6, the flow is

assumed to be symmetric to the centerline (z∗ = 0.0m) of the flat plate with respect

to the streamwise velocity u, wall-normal velocity v, density ρ and temperature T

and antisymmetric with respect to the spanwise velocity w, whereas for CASE 7, the

symmetry condition is removed.

Time-harmonic disturbances with a fundamental frequency of about f ∗ = 6.36kHz

(F = 3 × 10−5) are introduced through a blowing and suction slot located between

x∗1 ≃ 0.394m and x∗2 ≃ 0.452m (x2 − x1 ≈ λx). A discrete wave pair of instability

waves with equal but opposite wave angle is excited for all cases, except for CASE 4,

where also a two-dimensional wave with the fundamental frequency and a very low
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disturbance amplitude is additionally forced to initialize waves that are not directly

generated through the nonlinear wave interactions of the forced wave pair. The span-

wise wavenumber of β∗ ≃ 211.52m−1 for this wave pair is chosen to be such that

the generated instability waves experience strong amplification as predicted by LST

throughout the entire computational domain. This spanwise wavenumber determines

also the domain width of all simulations, i.e. z∗W = λ∗z = 2π/β∗ ≃ 0.03m. The major

differences between the setup for all cases are summarized in table 5.1.

5.2 Linear Regime

The linear transition regime is studied using both numerical simulations and sev-

eral theoretical approaches. This section will discuss results from LST, PSE and

DNS. The linear stability solvers from Mack (Mack, 1965, 1987) and Tumin (Tumin,

2007, 2008) are employed. The latter utilizes a single-domain Chebyshev spectral

collocation method (Malik, 1990; Tumin, 2007) to solve for the entire spectrum for

a single disturbance frequency at a given streamwise position in the flow and for a

prescribed spanwise wavenumber. Tumin’s solver was adjusted to the Intel R© Math

Kernel Library (based on LAPACK) for the solution of the generalized, nonsymmet-

ric eigenvalue problem. The spectra for the physical flow conditions discussed in this

chapter are shown in figure 5.2 for two frequencies and two spanwise wavenumbers at

the streamwise position x∗ = 0.5m (Rx = 1044).

Figure 5.2a,b show the two-dimensional eigenvalue spectra (vanishing β) for the

frequencies f ∗ = 6.36kHz and f ∗ = 84.78kHz. Two horizontal lines illustrated by

the circles in both figures represent the acoustic wave modes. Tumin (2007) denotes

the spectrum on the left side as the fast acoustic wave spectrum and on the right

side as the slow acoustic wave spectrum. These continuous spectra originate from

streamwise wavenumbers αr corresponding to the phase velocities cph,x = 1 ± 1/M .

The vertical line of circles in figure 5.2 indicates the continuous vorticity and entropy
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Figure 5.2: Eigenvalue spectra at x∗ = 0.5m (Rx = 1044). Results denoted by (◦,
♦, �) are obtained from Tumin’s solver (DNS solution as base flow) whereas results
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spectra (cph,x = 1). Very close to the acoustic wave spectra are two discrete modes in

figure 5.2a with mode F (fast mode) originating from the fast acoustic wave spectrum

and mode S (slow mode) originating from the slow acoustic wave spectrum. These

modes can be distinguished from the continuous spectrum by their eigenfunctions

(see for example figure 5.4a).
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Figure 5.3: Stability behavior of both discrete eigenmodes (—: mode S, -.-: mode F)
from the spectrum in figure 5.2 as a function of nondimensionalized angular frequency
ω (equation 4.8) at Rx = 1044 (β ∼ 10−8): (a) phase velocity cph,x, (b) streamwise
amplification rate αi. Vertical solid line highlights the outflow boundary of the longest
simulation (CASE 3) discussed in this chapter. The insert in (b) shows a close-up of
the amplified region; M=3.0, T∗

∞=103.6K, flat plate.

By changing the disturbance frequency or the streamwise position for the calcu-

lation of the spectrum, both discrete modes are moving through the complex α plane

as illustrated by figure 5.2b. Here, both modes are clearly separate from the contin-

uous spectra and are strongly damped. A similar trend can be observed when the

spanwise wavenumber is increased as shown in figure 5.2c. Tracking the eigenvalues

of mode F and mode S with changing disturbance frequency at a constant streamwise

position Rx leads to figure 5.3. This figure shows the phase velocities of both modes

as a function of the nondimensionalized frequency ω. Note that ω is dependent on

the streamwise position and on the frequency (equation 4.8). The phase velocities,

however, are only a function of ω meaning that changing the frequency for a con-
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stant streamwise position will result in the same phase-velocity plot as changing the

streamwise position for a constant frequency (Ma & Zhong, 2003). This is not true

for the amplification rate αi in figure 5.3b.

The phase velocity and amplification rate development in figure 5.3 show some of

the typical behavior as discussed for Mach 3.8 in section 4.4. For ω → 0, mode S

synchronizes with the slow acoustic wave spectrum and mode F synchronizes with the

fast acoustic wave spectrum represented by the horizontal lines at cph,x = 1−1/M and

cph,x = 1 + 1/M , respectively. For increasing frequency ω, the phase velocity of mode

S increases and for mode F decreases until they coincide at a specific frequency (ω ≃
0.44 in figure 5.3a). This coincidence between the phase velocities of both discrete

modes results from a “synchronism” mechanism (Fedorov & Khokhlov, 2002, and

section 4.4), which can amplify one of the discrete modes. For higher Mach numbers,

usually mode S is amplified leading to the so-called second-mode unstable region. In

figure 5.3b, the “synchronism” amplifies mode F. The increase in amplification for

this mode is however too small in order to generate a second-mode unstable region

as can be expected when figure 4.9 is considered.

The “synchronism” mechanism between both discrete modes has also a strong

effect on their eigenfunctions. Figure 5.4 demonstrates how the eigenfunctions of

both modes change with increasing frequency ω. When the phase velocities of both

modes coincide, their eigenfunction profiles become very similar as apparent in the

pressure disturbance in figure 5.4c.

For the setup of the simulations discussed in this chapter, it is important to know

whether the synchronization point at ω ≃ 0.44 is located within the computational

domain since this mechanism could have an influence on the nonlinear stages of tran-

sition and therefore, on oblique breakdown. In contrast to higher Mach numbers, the

synchronization point at Mach 3 is at a large value for the frequency ω. Figure 5.5,

for example, illustrates how this value decreases with increasing Mach number. Note

that this figure does not show the exact location where the phase velocities of both
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Figure 5.4: Eigenfunctions of the u-velocity and the pressure disturbance for Rx =
1044 and β ∼ 10−8 from Tumin’s solver (Tumin, 2007, 2008): u-velocity : amplitude
(—) and phase (-×-) of mode S, amplitude (- -) and phase (-∗-) of mode F, pressure:
real part (—) and imaginary part (- -) of mode S, real part (-.-) and imaginary part
(-..-) of mode F. (a) ω = 0.03132 (f ∗ = 6.36kHz, F = 3.0 × 10−5), results denoted
by (�, �) are from Mack’s solver (Mack, 1965) for comparison, (b) ω = 0.2088
(f ∗ = 42, 39kHz, F = 20.0×10−5), (c) ω = 0.4176 (f ∗ = 84.78kHz, F = 40.0×10−5),
(d) ω = 0.4915 (f ∗ = 100.00kHz, F = 47.08× 10−5); M=3.0, T∗

∞=103.6K, flat plate.
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Figure 5.5: Angular frequency ω at the synchronization point of mode F with the
entropy and vorticity continuous spectrum as a function of Mach number M for two-
dimensional disturbances (-.-) and as a function of spanwise wavenumber β (—) for
Mach 3 at Rx = 1044. According to Mack (1969), a second-mode unstable region
exists for M & 3.8 (see figure 4.9). M=3.0, T∗

∞=103.6K, flat plate.

discrete modes coincides, but rather the location where mode F coalesces with the

entropy and vorticity continuous spectrum (cph,x = 1 in figure 5.3a). The vertical

lines in figure 5.3 indicate the position of the outflow for the simulation with the

largest streamwise domain size (CASE 3). Clearly, the synchronization point is far

downstream of the outflow and hence, will not play any role in the transition process

for a flat-plate boundary layer at Mach 3. With increasing spanwise wavenumber this

point even moves to higher values of ω (figure 5.5). Thus, it can be concluded that

oblique breakdown, initiated for a spanwise wavenumber of β∗ = 211.52m−1 and a

frequency of f ∗ = 6.36kHz (F = 3.0 × 10−5), is only caused by mode S and thus,

mode F is not of interest for the interpretation of the simulation data in the following

sections.

For the rest of this section, the emphasis is on the stability behavior of mode S

and whether the simulations can correctly reproduce its downstream behavior. The

amplification rate of mode S is strongly dependent on the spanwise wavenumber.

As demonstrated in figure 5.2c, mode S moves to higher streamwise amplification
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rates and becomes separated from the slow acoustic wave spectrum for a spanwise

wavenumber of β∗ = 211.52m−1 and a frequency f ∗ = 6.36kHz when compared to

the spectrum for two-dimensional disturbances with the same disturbance frequency

in figure 5.2a. Note, also the origins of the slow and fast acoustic spectra move

to different streamwise wavenumbers since their corresponding streamwise phase ve-

locities change according to cph,x = 1 ± 1/(M cos(ψ)) with ψ being the wave angle

(section 4.3).

Tracking the eigenvalues of mode S in figure 5.2 yields the stability diagrams in

figure 5.6. In figure 5.6, contour levels of the amplification rate αi are plotted for

different disturbance frequencies and at different streamwise positions for a given

spanwise wavenumber. The solid lines constitute the stability diagram for the span-

wise wavenumber β∗ ≃ 211.52m−1 and the dashed line in figure 5.6a indicates the

neutral curve for the corresponding two-dimensional instability waves. Figure 5.6b

shows contour levels of αi at constant local Reynolds number Rx = 750 and figure 5.6c

for a constant frequency f ∗ = 6.36kHz. The computational domains for CASE 1,

2, 3 & 4 are also included in these figures. Instability waves (modes S) with the

frequency of interest for the DNS (6.36kHz) are amplified throughout the computa-

tional domain as can be seen in figure 5.6c. Therefore, linear stability suggests that,

for the flow conditions and the domain of interest, transition may be triggered by

these oblique instability waves.

In addition to the oblique breakdown simulations, two DNS with a considerably

decreased forcing amplitude were performed such that the linear regime is maintained

throughout the computational domain. These simulations facilitate a comparison

of the DNS results to LST (with parallel flow assumption) and to PSE. The PSE

calculations were conducted using NOLOT (Hein et al., 1996) during a stay at the

Institut für Aerodynamik und Gasdynamik (IAG) in Stuttgart, Germany. Figure 5.7

compares the complex streamwise wavenumber α from the DNS to LST and PSE for

a constant frequency of 3.0× 10−5 (6.36kHz) at two different spanwise wavenumbers
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Figure 5.6: Contours of constant amplification rate αi obtained from LST (Mack’s
solver): (a) for constant spanwise wavenumber β∗ ≃ 211.52m−1, dashed line indicates
neutral curve for two-dimensional waves, (b) for constant local Reynolds number Rx =
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Horizontal solid line in (a) and dotted lines in (b) and (c) indicate computational
setup; M=3.0, T∗

∞=103.6K, flat plate.
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Figure 5.7: Streamwise development of the complex streamwise wavenumber α ob-
tained by LST using Mack’s solver (×: β∗ = 211.52m−1), PSE using NOLOT (- -:
β∗ = 196.2m−1) and DNS (low forcing amplitude) for F = 3.0× 10−5 (6.36kHz): (a)
streamwise amplification rate αi, (b) streamwise wavenumber αr. For the DNS, α is
calculated using two different criteria, the wall pressure (—: β∗ = 211.52m−1) and
the maximum in the wall-normal amplitude distribution of the u-velocity disturbance
(◦: β∗ = 211.52m−1, �: β∗ = 196.2m−1); M=3.0, T∗

∞=103.6K, flat plate.

(β∗ = 196.2m−1 and β∗ = 211.52m−1). From the DNS data, the complex streamwise

wavenumber was calculated (see equation 4.4). The streamwise amplification rate

αi in figure 5.7a is computed using either the wall-pressure disturbance amplitude

(Eissler & Bestek, 1996; Ma & Zhong, 2003) or the maximum in the wall-normal

amplitude distribution for the u-velocity. As observed in previous investigations for

supersonic flat-plate boundary layers (Thumm et al., 1989; Eissler & Bestek, 1996;

Husmeier et al., 2005), the amplification rate based on the latter predicts stronger

growth rates than LST and this behavior was attributed to non-parallel effects by

the authors. The excellent agreement between DNS and PSE results in figure 5.7a

further corroborates this statement. Note that PSE is a nonlocal stability analysis,

which accounts for non-parallel effects. When using the wall-pressure disturbance

for the computation of the amplification rate αi, the agreement between LST and

DNS data improves significantly. This improvement confirms that different criteria

are differently affected by non-parallel effects as already observed for incompressible
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Figure 5.8: Comparison of wall-normal amplitude and phase distribution obtained
from DNS (reduced forcing amplitude) with the eigenfunctions from LST for (a) u-
velocity disturbance, (b) temperature disturbance and (c) pressure disturbance at
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distribution; Tumin’s stability solver (DNS profiles as base flow): (⋆) amplitude dis-
tribution, (×) phase distribution; M=3.0, T∗

∞=103.6K, flat plate.

boundary layers by Fasel & Konzelmann (1990).

The last figure for this section (figure 5.8) compares the wall-normal amplitude

and phase distribution for the velocity, temperature and pressure from the DNS to

results obtained by LST using Tumin’s stability solver at x∗ = 0.5m, β∗ = 211.52m−1

and f ∗ = 6.36kHz. The amplitude distributions from both, linear theory and DNS,

are normalized by their respective maximum values within the boundary layer. The

excellent agreement between all results substantiates that the linear eigenbehavior of

the unstable mode in figure 5.2c is correctly reproduced in the DNS. Furthermore, the

agreement with theory confirms that the disturbances introduced via the blowing and

suction slot indeed initiate a pair of oblique instability waves and that these waves

are dominant for the present setup.
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5.3 From the Weakly Nonlinear Regime to the Late Nonlinear Stages

In the last section, it was demonstrated that, for a laminar flat-plate boundary layer

at Mach 3 with T ∗
∞ = 103.6K and an adiabatic wall, transition can only be initiated
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Figure 5.9: Initial disturbance development of the forced oblique instability wave
with f ∗ = 6.36kHz and β∗ = 211.52m−1 for cases with the high forcing amplitude
(lines), a DNS with reduced forcing amplitude (◦) and for LST (×). (a) streamwise
development of maximum u-velocity disturbance: (—) [1,±1] (- -) [0,±2] (-..) [1,±3]
(-.-) [0,±4] (b) amplification rate αi calculated using the maximum of the u-velocity
disturbance as criterion, (b) wall-normal amplitude and phase distribution of the
streamwise velocity perturbation at x∗ = 0.65m (vertical dotted line in a and b);
M=3.0, T∗

∞=103.6K, flat plate.

by a slow mode (mode S). For a frequency of 6.36kHz and a spanwise wavenumber of

β∗ = 211.52m, this mode experiences strong streamwise amplification and therefore,

was forced in all simulations discussed below. The forcing amplitude was chosen as

0.3% of the free-stream velocity U∞ for all cases. In addition, the wall temperature,

even in the fully turbulent region, was fixed to the adiabatic wall temperature of the

laminar boundary layer, i.e. Tw = Tad.

To verify whether the transition process initiated in the simulations indeed passes

through all transition regimes typical for a low-disturbance environment, figure 5.9b

compares the streamwise amplification rate αi obtained from the maximum in the

wall-normal amplitude distribution of the streamwise velocity disturbance from fig-

ure 5.9a (—) with results from LST (Mack’s solver) and the DNS with a reduced
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forcing amplitude from the previous section. The streamwise amplification rate in

figure 5.9b for the cases with the high forcing amplitude is either contaminated by

acoustic disturbances or by the fast mode (see also the validation case in Eissler

& Bestek, 1996) since its streamwise distribution exhibits an oscillation. For the

simulation with the reduced forcing amplitude from the previous section, these mod-

ulations are weaker since the disturbance slot was positioned farther upstream when

compared to the location of the disturbance slot for all simulations with the higher

forcing amplitude. As a consequence, the amplitude levels of the damped acoustic

disturbances or the damped fast mode were very small in the region of interest for

the simulation with the small forcing amplitude (see figure 5.7a). Note a receptivity

study as in Tumin et al. (2007) would provide more detailed information about the

absolute amplitude values of the fast mode and the continuous part of the spectrum

right downstream of the disturbance slot. Such a study, however, is beyond the scope

of this chapter. Nevertheless, figure 5.9 confirms that in all cases with a large forcing

amplitude the linear regime is correctly reproduced by all DNS results presented in

this chapter.

The early nonlinear stages of oblique breakdown are dominated by the nonlinear

interaction of a wave–vortex triad composed by the forced oblique discrete modes

[1,±1] and the steady vortex modes [0,±2] (Fasel et al., 1993; Chang & Malik, 1994)

as demonstrated by the streamwise development of the wall-normal maximum for the

streamwise velocity in figure 5.9a. It is important to note that the [0,±2] modes

are generated directly by the forced oblique modes [1,±1] and grow mainly through

nonlinear interaction with these oblique modes (Chang & Malik, 1994). This is in

contrast to the incompressible case where the growth of the [0,±2] modes is caused

by transient growth (Berlin et al., 1999).

The wave–vortex triad also clearly dominates the flow structures in the early

nonlinear stages of oblique breakdown. Figure 5.10 shows contours of streamwise

velocity disturbance at two different wall-normal positions between x∗ = 0.546m and
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x∗ = 0.670m. Close to the wall at y∗ ≃ 0.9mm longitudinal regions of low and high

streamwise velocity develop and are amplified in streamwise direction while for higher

wall-normal positions (at y∗ ≃ 2.3mm) the typical wave pattern of two superimposed

oblique instability waves is visible. Hence, the influence of the vortex modes [0,±2]

on the contours of streamwise velocity disturbance is more significant closer to the

wall while for higher wall-normal positions the initially forced wave pair [1,±1] is

dominant. The wall-normal dependency of the flow structures in the contours of

streamwise velocity disturbance is caused by the absolute amplitude level of modes

[0,±2] and [1,±1] and their wall-normal amplitude distribution. The maximum in

the wall-normal amplitude distributions of modes [0,±2] is closer to the wall than for

modes [1,±1] (see also Mayer, 2004).

Instantaneous flow structures identified by the Q-criterion (Hunt et al., 1988) in

figure 5.11 confirm the structures shown in figure 5.10. Q is related to the second

invariant of the velocity gradient tensor. Positive values of Q reveal flow regions

where rotation dominates the flow field. Again, the flow structures in figure 5.11a
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Figure 5.11: Flow structures identified by the Q-criterion: (a) Q = 10 between
x∗ = 0.546m and x∗ = 0.670m, (b) Q = 100 between x∗ = 0.670m and x∗ = 0.798m.
Also shown are the boundary layer thickness indicated by a solid black horizontal
line and contours (between −0.1 and −0.001) of streamwise velocity disturbance
for a constant spanwise position (in (a) at z∗ ≃ 0.0149m = λz/2 and in (b) at
z∗ ≃ 0.0114m ≃ 0.38λz); M=3.0, T∗

∞=103.6K, flat plate.

represent the superposition of two oblique waves. The legs connecting the staggered

maxima in figure 5.11a denote constant phase lines for both modes indicating that

two waves (here [1,±1]) with equal but opposite wave angle travel downstream. Also

shown in figure 5.11 are the boundary layer thickness indicated by a solid black

line and contours of streamwise velocity disturbance (between −0.1 and −0.001)

for one constant spanwise position (in (a) at z∗ ≃ 0.0149m = λz/2 and in (b) at

z∗ ≃ 0.0114m ≃ 0.38λz). When comparing the contours of streamwise velocity

disturbance in figures 5.10 and 5.11, the Q-criterion predicts similar flow structures.

The characteristic disturbance amplitude curves for the early and late nonlinear

stages of oblique breakdown is shown in figure 5.12. This figure demonstrates the

streamwise development of the maximum u-velocity disturbance for various spanwise

wavenumbers from CASE 1 and CASE 2 for modes that are directly created through

nonlinear wave interactions of the wave–vortex triad. The nonlinear generation of

higher-harmonic modes in time and spanwise direction follows a particular pattern

as found for a Mach 1.6 boundary layer (Thumm, 1991; Fasel et al., 1993): Modes
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Figure 5.12: Streamwise development of the maximum u-velocity disturbance for
different spanwise wavenumbers from CASE 1 (symbols) and CASE 2 (lines): (a)
stationary modes ( (◦, —): [0,±2], (�, - -): [0,±4], (♦, -.-): [0,±6], (△, -..): [0,±8]),
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-.-): [3,±5], (△, -..): [3,±7], (+, -..): [3,±9]); M=3.0, T∗

∞=103.6K, flat plate.
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with odd spanwise wavenumbers k are only generated for odd harmonic frequencies h,

while modes with even spanwise wavenumbers are generated only for even frequencies

h resulting in an even value for the sum of h and k.

The forced modes [1,±1] initially develop linearly up to about x∗ = 0.7m (see

figure 5.9a and figure 5.12b). At roughly this position, modes [0,±2] and [1,±3]

reach amplitude levels that are comparable to the levels of modes [1,±1]. This event

marks the end of the early nonlinear stage. A short distance downstream, at about

x∗ = 0.8m, higher harmonic modes reach amplitude levels of the same order of mag-

nitude as the original wave–vortex triad and nonlinear saturation sets in. Note that

the maximum of the u-velocity fluctuation does not directly display the energy trans-

fer between separate modes. Nevertheless, it still reveals important events in the

transition process of oblique breakdown, especially when modes that are not direct

descendants of the wave–vortex triad are considered. These modes are generated

by round-off errors due to the limited machine precision and their streamwise and

spanwise amplitude development is displayed for the subharmonic frequency in fig-

ures 5.13a and 5.13b and for the fundamental frequency in figures 5.13c and 5.13d.

Note that for other frequencies, which are not integer multiples of the fundamental

frequency, similar amplitude distributions can be observed.

The streamwise amplitude development of all modes in figures 5.13a and 5.13c

exhibit similar features as for the modes in figure 5.12. Up to about x∗ = 0.8m, all

modes experience streamwise amplitude growth while they start to saturate farther

downstream. However, one major difference to figure 5.12 is a sudden increase in the

streamwise growth rate for all modes at about x∗ = 0.9m. The spanwise amplitude

distributions in figures 5.13b and 5.13d broaden significantly in streamwise direction

with the peak amplitude at small spanwise wavenumbers. An explanation for the

initial growth up to x∗ = 0.8m of disturbances with frequencies that are no longer

integer multiples of the fundamental frequency may be provided by the new resonance

triads discussed in Mayer et al. (2009a) where all three instability waves possess a
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Figure 5.13: Streamwise (a,c) and spanwise (b,d) amplitude development for modes
that are not directly generated by the wave–vortex triad ([1,±1] and [0,±2]) from
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M=3.0, T∗

∞=103.6K, flat plate.
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Figure 5.14: Flow structures identified by the Q-criterion for Q = 15000 (CASE 3)
between x∗ = 0.798m and x∗ = 0.924m. Also shown are contours of spanwise vorticity
at z∗ ≃ −0.0087m. (a) Entire three-dimensional view, (b) close-up of the breakdown
region confirming that the Q-criterion predicts similar structures as illustrated by the
spanwise vorticity; M=3.0, T∗

∞=103.6K, flat plate.

different disturbance frequency.

In the following figures, flow structures are shown for the region between x∗ =

0.798m and x∗ = 0.97m in order to highlight key features in the flow field that could

be related to the sudden increase in the streamwise growth rate at about x∗ = 0.9m

for all modes in figure 5.13 that are not directly generated by the wave–vortex triad.

The instantaneous three-dimensional isosurfaces for Q = 15000 in figure 5.14a reveal

that the longitudinal structures from figure 5.11 are lifted up from the wall and

breakup into small-scale structures, which are similar to hairpin-like vortices. A

close-up view of these flow structures is given in figure 5.14b. Contours of spanwise

vorticity at z∗ ≃ −0.0087m in figure 5.14 further corroborate that the Q-criterion

clearly identifies the relevant flow structures.

The contours of spanwise vorticity for various spanwise positions in figure 5.15

provide a detailed view of the breakup region and the downstream development of the
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Figure 5.15: Contours of spanwise vorticity at various spanwise positions for one time
instant from CASE 3: (a) z∗ ≃ −0.0087m, (b) z∗ ≃ −0.0076m, (c) z∗ ≃ −0.0064m,
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M=3.0, T∗

∞=103.6K, flat plate.
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small-scale structures. Note that the streamwise extent in this figure reaches farther

downstream than in figure 5.14. The contour levels are chosen such that the contrast

in these plots is significantly increased. Figure 5.15 reveals rope-like structures (region

of high shear) that coincide with the position of the longitudinal structures from

the previous figure. The tip of these rope-like structures is lifted up from the wall

and again breaks up into smaller scales. This breakup is further exemplified by the

temporal evolution of contours of spanwise vorticity at z∗ ≃ −0.0087m in figure 5.16.

At this spanwise position, the breakup region extends from about x∗ ≃ 0.84m to

x∗ ≃ 0.9m. The sudden increase in streamwise amplification of all modes downstream

of x∗ ≃ 0.9m in figure 5.13 seems to be linked to the breakup into smaller scales.

Downstream of this position the entire flow is rapidly contaminated by small-scale

structures as demonstrated in figure 5.17 and the final breakdown to turbulence is

initiated.

The flow structures in figures 5.14 to 5.17 are symmetric with respect to the

centerline of the plate. This is to be expected since these figures are obtained from

CASE 3, in which symmetry is enforced by the computational setup. If the symmetry

condition is not enforced as for CASE 7, the picture does not change as demonstrated

by figure 5.18. This figure illustrates contours of streamwise velocity u of the first

higher Fourier mode in spanwise direction from CASE 7 for the sine and cosine

modes (equation 3.11), respectively. The minimum and maximum of the contour

levels in figure 5.18a and b are different in order to emphasize the flow structures.

The influence of asymmetric modes on oblique breakdown initiated by two oblique

waves with exactly the same amplitude and phase is limited since these modes are

only generated by the round-off error of the calculation. In CASE 3, the streamwise

position of the final breakup into small-scale structures denotes the location where

all modes with frequency unequal to integer multiples of the forcing frequency are

strongly amplified. In CASE 7, a similar behavior can be observed. At exactly

the same streamwise position (where the breakup into small-scale structures occurs)



118

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.0
2.0

*10
-2

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.0
2.0

*10
-2

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
0.0

2.0

*10
-2

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.0
2.0

*10
-2

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.0
2.0

*10
-2

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96

0.0
2.0

*10
-2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
*103span. vorticity

− − − −

(a)

(b)

(c)

(d)

(e)

(f)

x*, [m]

y*, [m]
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T ; M=3.0, T∗

∞=103.6K, flat plate.
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Figure 5.17: Flow structures identified by the Q-criterion for Q = 20000 (CASE 3)
between x∗ = 0.924m and x∗ = 1.071m. (a) Entire three-dimensional view, (b)
close-up of the early turbulent region; M=3.0, T∗

∞=103.6K, flat plate.

the asymmetric modes also start to be amplified as illustrated by figure 5.18a. The

amplitude values of the streamwise velocity for the sine mode in figure 5.18a provide

a measure for the magnitude of asymmetry in CASE 7. For the u-velocity, this mode

is set to zero in CASE 3. Since the contour levels for the sine mode in figure 5.18a

are more than 10 orders of magnitude smaller than the contour levels for the cosine

mode, CASE 7 remains symmetric even after the breakup into small-scale structures.

This is true over the entire domain length of CASE 3. It is however visible that the

asymmetric modes are strongly amplified in downstream direction and will eventually

reach high amplitude values.

5.4 Final Breakdown to Turbulence

In the previous section a detailed description of the breakup into small-scale structures

for oblique breakdown was given and therefore, the different transition regimes from
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Figure 5.18: Contours of instantaneous streamwise velocity u obtained from CASE 7
for the first higher Fourier mode in spanwise direction: (a) sine mode, contour levels
from −1.0E−12 to 1.0E−12, (b) cosine mode, contour levels from −0.1 to 0.1; M=3.0,
T∗

∞=103.6K, flat plate.

the early nonlinear regime to the breakdown were discussed. Figure 5.17 clearly illus-

trates that the breakup is accompanied by a rapid spreading of small-scale structures

over the entire flow field downstream of a particular streamwise position (x∗ ≃ 0.9m).

Close to this position, the time signal however is still periodic although the flow field

exhibits features of a turbulent boundary layer (small-scale structures). Thus, the

final breakdown to turbulence did not occur yet. All cases listed in table 5.1, except

of CASE 1, which has a very small streamwise domain extent, lead to the same results

for the early and late nonlinear transition stages. The different grid resolutions and

domain heights of the different cases mainly affect the final breakdown to turbulence.

Therefore, this section will also assess what resolution is necessary in order to obtain

a converged solution for the entire transition process of oblique breakdown at Mach 3.

In order to check when periodicity breaks down in the simulations, figure 5.19

compares the streamwise development of the wall-normal maximum for the u-velocity

disturbance obtained from a Fourier transformation of the time-dependent flow data

for CASE 2, CASE 3 and CASE 4. Note that CASE 4 only differs from CASE 3

in the forcing input. In CASE 4, additionally to the oblique instability waves with

frequency f ∗ = 6.36kHz, a two-dimensional instability wave with one order of mag-
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Figure 5.19: Streamwise development of the wall-normal maximum of the streamwise
velocity u for selected Fourier modes: (a) CASE 3, (b) CASE 4; the dotted line marks
the end of the domain of CASE 2. The notation [h, k] is used to identify a particular
wave according to its frequency h and its spanwise wavenumber k. h denotes multiples
of the fundamental frequency and k multiples of the smallest spanwise wavenumber;
M=3.0, T∗

∞=103.6K, flat plate.

nitude smaller amplitude but the same forcing frequency as the oblique waves was

also introduced. Forcing a two-dimensional instability wave initializes waves that can

otherwise not be directly generated through the nonlinear wave interactions of the

forced wave pair and, therefore, are generated only at the level of round-off errors.

As a consequence of the additional perturbation, the disturbance spectrum should be

broader earlier for this simulation.

For figure 5.19, two different Fourier transforms have been performed using either

a time signal with the length of one period of the forcing frequency or two periods.

If the flow field remained periodic in time, the Fourier-modes from both time signals

would develop identically in the streamwise direction. As can be seen in figure 5.19,

this is not the case for CASE 3 & 4. Just downstream of the end of the domain of the

simulation CASE 2 (x∗ = 1.05), highlighted by a dotted vertical line in figure 5.19,

the streamwise amplitude distribution of the initially forced mode [1,±1] differs for

the two time signals. Hence, CASE 3 and CASE 4 clearly lose their periodicity close

to the end of the computational domain. This is further emphasized by figure 5.20,
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Figure 5.20: Temporal evolution of the streamwise velocity at y = 2.15mm (y+ ≃ 50)
for CASE 3: (a) x∗ = 0.942m, (b) x∗ = 1.104; M=3.0, T∗

∞=103.6K, flat plate.

which shows the original time-signal (12 forcing periods) for CASE 3 for two differ-

ent streamwise positions at the wall-normal location y = 2.15mm (y+ ≃ 50). At

x∗ = 0.942m (figure 5.20a), the signal is still strongly periodic whereas farther down-

stream, at x∗ = 1.104 (figure 5.20b), a more random behavior becomes apparent. As

figure 5.13 from the previous section, figures 5.19 and 5.20b illustrate the growth of

disturbances with frequencies that are no longer integer multiples of the fundamental

forcing frequency. In figure 5.19, for example, the subharmonic disturbances reach

amplitude levels comparable to the initially forced waves [1,±1] in proximity to the

end of the computational domain.

With the loss of the periodicity in CASE 3, one missing piece of evidence for the

final breakdown to turbulence is found. Another piece of evidence is the streamwise

decay of the skin-friction coefficient after the strong increase caused by transition.

Figure 5.21a demonstrates that CASE 3 indeed experiences a decay in skin friction.

All disturbances with a non-harmonic frequency (with respect to the original forcing

frequency) start to saturate right after the skin-friction coefficient cf drops in fig-

ure 5.21a. This is shown for the subharmonic frequency in figure 5.19. Hence, the
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decay of the skin-friction coefficient is most likely linked to the loss of periodicity.

Once, the periodicity in time is lost and the peak in skin friction is surpassed down-

stream of x∗ = 1.05, the transition process ends and the flow has reached a turbulent

state.

The skin-friction coefficient in figure 5.21a is calculated from

cf =
2µ∂u

∂y
|y=0

Re
, (5.1)

where the Reynolds number Re is based on an arbitrary reference length L∗ and the

flow quantities in the free stream. Note that symbols with an overline φ represent the

Reynolds-average, i.e. time and spanwise averaged flow quantities, throughout this

chapter

φ =
1

λz

1

∆t

∫ λz

0

∫ t0+∆t

t0

φ (t, z) dtdz . (5.2)

Furthermore, fluctuations about the mean of a Reynolds-averaged quantity φ are

denoted by φ′ and fluctuations about the mean of a Favre-averaged quantity ρφ/ρ are

denoted by φ′′. Note that in some figures the interval for the time average is indicated

by the number of forcing periods Tforcing.

Also included in figure 5.21a are different values of the skin-friction coefficient

from other numerical simulations published in the literature for turbulent supersonic

flow (Guarini et al., 2000; Maeder et al., 2001) and a theoretical correlation for the

fully-developed turbulent regime given by White (1991). This correlation is valid for

non-adiabatic wall boundary conditions and has the following form

cf ∼ 0.455
(
S ln

[
0.06
S
Rexe

µe

µw

√
Te

T w

])2 , (5.3)

where subscript e refers to edge conditions and subscript w to wall conditions. The

factor S can be obtained from

S =

(
T aw

Te
− 1
) 1

2

arcsin(A) + arcsin(B)
, (5.4)
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Figure 5.21: Streamwise development of selected mean-flow properties from CASE 2
and CASE 3 in comparison to different values published in the literature for turbu-
lent supersonic flow (Guarini et al., 2000; Maeder et al., 2001) and theoretical models
(White, 1991): (a) skin-friction coefficient cf , (b) Reynolds number based on mo-
mentum thickness Θ, (c) shape factor H12. Note that for CASE 2 and 3 the interval
for the time average is indicated by the number of forcing periods Tforcing; M=3.0,
T∗

∞=103.6K, flat plate.
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with A and B defined as

A =
2a2 − b√
b2 + 4a2

and B =
b√

b2 + 4a2
, (5.5)

where a and b are given by

a =

√
γ − 1

2
M2

e

Te

Tw

and b =

(
T aw

Tw

− 1

)
, (5.6)

respectively. Note that T aw denotes the adiabatic wall-temperature for a turbulent

boundary layer at the same flow conditions. Since this value is not known, it has to

be estimated using the turbulent recovery factor (White, 1991; Roy & Blottner, 2006)

rturb ∼ (Pr)
1

3 ∼ 0.9 . (5.7)

The streamwise development of the skin friction coefficient for CASE 3 in fig-

ure 5.21a approaches the theoretical estimate given by White’s correlation (White,

1991) towards the end of the computational domain. Moreover, the value computed

by Guarini et al. (2000) using a Temporal Direct Numerical Simulation (TDNS) for a

Mach 2.5 turbulent boundary layer is close to the DNS results. TDNS, with some as-

sumptions, computes an approximation of a fully-developed turbulent boundary layer

at a given streamwise location in the limit of a vanishing extent of the streamwise

domain size. The data can then be used for comparison of skin-friction coefficients

with data obtained via a full spatial DNS, if a location can be found where the

Reynolds number based on the momentum thickness Reθ and the shape factor H12

for both simulations are in close enough agreement. Figures 5.21b and 5.21c confirm

that the TDNS can be used as a rough estimate. These figures show the stream-

wise development of the Reynolds number based on the momentum thickness Reθ

and the shape-factor H12 for CASE 2, CASE 3 and TDNS reference data from the

literature. Both the Reynolds number and the shape-factor are close to values from

Guarini et al. (2000) at the end of the computational domain, but do not exactly

match. A better agreement cannot be expected since both simulations differ in the
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Figure 5.22: Comparison of selected mean-flow properties from CASE 3 starting from
x∗ = 1.047m to values published in literature for supersonic and hypersonic turbulent
flat-plate boundary layers (Guarini et al., 2000; Maeder et al., 2001; Jiang et al., 2006;
Maekawa et al., 2007; Martin, 2007; Coles, 1954): (a) shape factor H12 vs. Reθ, (b)
skin friction coefficient cf vs. Reθ; M=3.0, T∗

∞=103.6K, flat plate.

flow speed and in the wall-temperature boundary condition. The TDNS of Maeder

et al. (2001), although at the same Mach number, approximates the flow with a

considerably higher momentum thickness, i.e. a location farther downstream than in

simulations presented in this chapter. Consequently, their data should deliver a lower

skin-friction coefficient, which is indeed the case.

Figure 5.22 shows the skin-friction coefficient and the shape factor as a function

of the Reynolds number based on momentum thickness for the region downstream of

the peak in skin friction of CASE 3 together with several additional temporal and full

spatial DNS and experiments of supersonic and hypersonic turbulent boundary lay-

ers published in the literature (Guarini et al., 2000; Maeder et al., 2001; Jiang et al.,

2006; Maekawa et al., 2007; Martin, 2007; Coles, 1954). When compared to these

results, CASE 3 can be regarded as reaching realistic values for mean-flow properties

of a wall-cooled supersonic turbulent boundary layer close to the end of the compu-

tational domain. In order to compare computed values of the skin-friction coefficient

for different Mach numbers and wall-temperature boundary conditions, it is common
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(Pirozzoli et al., 2004) to transform the compressible skin-friction coefficient cf at a

given local Reynolds number Rex into an incompressible reference value cf,i at an in-

compressible reference Reynolds number Rex,i using the van Driest II transformation

(White, 1991; Roy & Blottner, 2006). These transformations are as follows:

cf,i = Fccf and Rex,i = FxRex , (5.8)

where Fc represents the skin-friction transformation function and Fx denotes the

Reynolds number transformation function. Both functions can be computed from

equation (5.4) according to

Fc = S2 and Fx =
µe

µw

F−1
c . (5.9)

The transformed skin friction for CASE 3 is shown in figure 5.23a. For reference

purposes, the friction coefficient for a Blasius boundary layer

cBf,i =
0.664√
Rex,i

, (5.10)

and a correlation by White (1991) for the estimate of the friction coefficient of an

incompressible turbulent boundary layer

cWf,i =
0.455

ln2 (0.06Rex,i)
(5.11)

are also included in this figure. As seen in figure 5.23a, results for CASE 3 are

approaching the theoretical curve of equation (5.11) for an incompressible turbulent

boundary layer. This gives further confidence that CASE 3 transitioned to a turbulent

state.

To assess whether CASE 3 indeed predicts a representative streamwise skin-

friction distribution independent of grid and time-averaging influences, and typical

for an oblique breakdown transition scenario at Mach 3, the skin-friction coefficients

of the other simulation cases (CASE 1-2, 4-6) listed in table 5.1 are compared to

CASE 3 in figure 5.23b. Clearly, all simulations, except for CASE 2, experience
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Figure 5.23: Streamwise development of skin-friction coefficient for all simulations:
(a) van Driest II transformed in order to compare with incompressible, turbulent
skin-friction predictions. Simulation data is taken downstream of the streamwise
position x∗ = 1.047m (Rex,i = 609479) where the skin-friction coefficient starts to
decay, (b) for the later stages of transition in order to assess the influence of different
computational grid configurations and the length of the interval for time-averaging;
M=3.0, T∗

∞=103.6K, flat plate.

identical streamwise growth in skin friction up to the maximal value. Moreover, in

the transitional regime the skin friction is also independent of the interval length

used for the time-averaging (denoted by the number of forcing periods Tforcing) since

here, the flow is still periodic. Hence, the plateaus at approximately x∗ ≃ 0.86m and

x∗ ≃ 0.9m and the valley at x∗ ≃ 1.0m seem to be a characteristic feature of oblique

breakdown initiated by only two oblique instability waves. It is very important to

note that these features correlate with the findings from the previous section. The

first plateau at about x∗ ≃ 0.86m is close to the streamwise position where the first

breakup occurs in figure 5.16 while the second plateau marks the second breakup

followed by the generation of hairpin-like vortices. The latter plateau also coincides

with streamwise location where all disturbance modes that are not direct descendants

of the wave–vortex triad start significantly to grow in figure 5.13. An imprint of the

valley at x∗ ≃ 1.0m for the skin-friction coefficient in figure 5.23b can also be found
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Figure 5.24: Skin-friction coefficient for CASE 3 as a function of interval length for
time-averaging indicated by the number of forcing periods Tforcing at three different
streamwise positions; M=3.0, T∗

∞=103.6K, flat plate.

in the streamwise distribution of these modes in figure 5.13.

The skin-friction distributions in figure 5.23b deviate downstream of the maximum

at about x∗ ≃ 1.04m for CASE 3 and CASE 4. Although in CASE 4, an additional

two-dimensional mode ([1, 0]) with the fundamental frequency is forced in order to

broaden the disturbance spectrum, final breakdown to turbulence is not enhanced

when compared to CASE 3. For CASE 4, the skin-friction coefficient in figure 5.23b

is computed from time-averaged data with only two forcing periods as interval length

for the averaging. Figure 5.24 demonstrates that a larger interval length is required

for time-averaging in order to obtain convergence for CASE 3. For the first two

streamwise positions reported in figure 5.24 convergence is achieved within 25 forcing

cycles while for the last position (x∗ = 1.104m) CASE 3 could be longer averaged.

An overview of the grid resolution in near-wall units utilized for CASE 3 and 4

and some main characteristic quantities as maximum in skin-friction coefficient are

listed in table 5.2. When compared to other numerical simulations in the literature,

CASE 3 and 4 have sufficient resolution close to the outflow boundary for a supersonic

turbulent boundary layer. (Note that CASE 5 has an even higher domain height

as CASE 3 and CASE 6 has a finer grid resolution in wall-normal and streamwise



130

Pirozzoli et al. Guarini et al. CASE 3 Maeder et al. Jiang et al.
M 2.25 2.5 3 3 4.5
ReΘ|max 4250 1600 1829 3000 3300
Cf |max 0.003 0.003 0.0032 0.002 0.002
(xL − x0)

+ 19099 2269 20363 549 9584
y+

H 3479 875 698 1176 1290
z+

W 1671 1134 341 314 192
∆x+ 14.50 8.86 3.32 2.96 6.00
∆y+

w 1.05 0.48 0.49 − 0.63
∆z+ 6.56 5.91 1.35 1.74 1.50

Table 5.2: Grid resolution and domain size from CASE 3 (inner length scale taken at
x∗ = 1.087m) compared to other simulations in the literature; M=3.0, T∗

∞=103.6K,
flat plate.

direction than CASE 3.)

For CASE 3, wall-normal distributions of the Reynolds-averaged streamwise ve-

locity (U), Favre averaged streamwise velocity (ρU/ρ) and Reynolds-averaged tem-

perature (T ) are presented in figure 5.25 using outer scaling at different streamwise

positions. For comparison, one profile from CASE 2 is also plotted in figures 5.25b and

5.25c at position x∗ ≃ 0.996m. This profile matches the corresponding profile from

CASE 3 perfectly in the outer part of the boundary layer. Close to the wall, however,

differences become apparent, which is to be expected since the skin-friction coefficient

does also not agree for both cases in figure 5.23b. The difference in the mean-flow

profiles between CASE 2 and CASE 3 in figure 5.25 is most likely caused by the

different wall-normal stretching in both simulations since the grid resolution at the

wall is exactly the same for both simulations. Note that it is common in simulations

of turbulent boundary layers to use strong grid stretching in wall-normal direction.

For the simulations presented here, such a grid stretching is not applicable because it

would be unlikely, if not impossible, to compute a correct disturbance eigenfunction in

the linear regime of the transition process. Since the goal of the present investigation

is to compute through the entire transition process, a more conservative approach to
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Figure 5.25: Wall-normal distribution of several mean-flow quantities from CASE 2
and CASE 3 at different streamwise positions: (a) Reynolds-averaged streamwise
velocity, (b) Favre-averaged streamwise velocity, (c) Reynolds-averaged temperature.
δc denotes boundary layer thickness obtained from the Reynolds-averaged streamwise
velocity U ; M=3.0, T∗

∞=103.6K, flat plate.

wall-normal stretching had to be employed.

With increasing downstream position, all mean-flow profiles in figure 5.25 become

fuller when compared to the laminar initial condition denoted by IC. For the last

two downstream locations x∗ ≃ 1.051m and x∗ ≃ 1.104m, the change in the pro-

file shape is not as pronounced as for the upstream positions. These two positions

are downstream of the maximum in skin friction in figure 5.23b (see also table 5.3)

and therefore, the mean-flow profiles should be close to turbulent boundary layer

profiles. For convenience, table 5.3 summarizes selected mean-flow properties at all

downstream locations utilized for figure 5.25 and succeeding figures.

Using the van Driest transformation

Uc =

∫ ū

0

√
Tw

T
du (5.12)

for the mean-flow profiles in figure 5.25 allows for comparison with incompressible

similarity profiles of turbulent boundary layers. The van Driest transformed stream-
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Figure 5.26: Van Driest transformed streamwise velocity normalized by wall-shear
velocity for different streamwise positions: (a) x∗ = 0.942m, (b) x∗ = 0.996m, (c)
x∗ = 1.05m, (d) x∗ = 1.104m; for clarity only every fourth point is shown, except
for (d) where every point is plotted to illustrate the near-wall resolution; M=3.0,
T∗

∞=103.6K, flat plate.
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upstream of cmax
f downstream of cmax

f

x∗ [m] 0.942 0.996 1.051 1.087 1.104
Rex 2.041E6 2.165E6 2.292E6 2.378E6 2.416E6
Rex,i − − 6.125E5 6.383E6 6.481E6
Reθ 1458 1594 1714 1774 1827
H12 4.704 4.606 4.721 4.961 4.935
cf 2.317E−3 3.055E−3 2.993E−3 2.900E−3 2.898E−3
cf,i − − 4.878E−3 4.710E−3 4.730E−3
δ∗ [mm] 9.074 11.477 15.680 17.714 18.402

Table 5.3: Summary of mean-flow properties at five different streamwise locations for
CASE 3; M=3.0, T∗

∞=103.6K, flat plate.

wise velocity in near-wall units is plotted in figure 5.26 for different streamwise posi-

tions. Also included is the theoretical similarity profile for incompressible turbulent

boundary layers, which follows the form

U+
c =

1

κ
ln
(
y+
)

+ C . (5.13)

For the von Kármán constant κ, typically a value of κ = 0.41 is used while the

constant C is about 5.2 (Roy & Blottner, 2006).

Downstream of the peak in skin friction cf , the van Driest transformed velocity

approaches the theoretical curves in figures 5.26c and 5.26d. This behavior is also

reported by Jiang et al. (2006), who investigated transition initiated by oblique break-

down in a flat-plate boundary layer at Mach 4.5. Their van Driest transformed mean

velocity profile is compared to CASE 3 in figure 5.26d. Note that in figure 5.26 not

every point in wall-normal direction is plotted except for figure 5.26d, which therefore

illustrates the near wall resolution of CASE 3 (∆y+ ≃ 0.49).

The first part of this section corroborated that oblique breakdown can lead to

a turbulent flow by collecting two important pieces of evidence: (1) The loss of

periodicity of the flow and (2) a clear decay of the skin friction in downstream direction

after reaching a peak value at about x∗ ≃ 1.05m. So far, however, only mean-

flow data for CASE 3 were discussed and compared to theoretical predictions for
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supersonic turbulent flows and results from other numerical simulations. The focus

of the following discussion is on turbulent statistics that are based on fluctuation

quantities as for example the turbulent Mach number or r.m.s. values.

It is common in the literature to check the accuracy of simulations of turbulent

boundary layers by analyzing one-dimensional power spectra of velocity components

at given streamwise and wall-normal positions. Such results are displayed in fig-

ure 5.27 for y+ ≃ 49 at different streamwise locations. The spectra were computed

using Fourier transforms and the following relation

Eαα = F (α)F (α) , (5.14)

where F (α) symbolizes the Fourier transform of the velocity component α. In fig-

ure 5.27, α represents either the streamwise, wall-normal or spanwise velocity, i.e. u, v

or w, respectively. Note that for the calculation of the power spectra in the spanwise

direction (figures 5.27a, 5.27c and 5.27e) the overline in equation (5.14) indicates only

a time average (Reynolds average) whereas for the computation of the power spectra

in time (figures 5.27b, 5.27d and 5.27f) only a spanwise average is used.

In figure 5.27, all velocity components experience an energy decline as predicted

by theory (Heisenberg, 1948) (dashed and dashed-dotted lines). For the calculation

of the energy spectra in CASE 2 (figures 5.27a and 5.27b), only a limited amount of

temporal data were available and, hence, the curves are not as smooth as for CASE 3

(figures 5.27c-f). Nevertheless, the energy decay in the spanwise direction close to

the end of the computational domain (at x∗ = 1.051m in figure 5.27a) seems to be

sufficient in CASE 2 whereas in figure 5.27b the lower resolution in the streamwise

direction leads to a premature drop in energy for high frequencies. The higher res-

olution in the spanwise and streamwise directions for CASE 3 improves the power

spectra (at x∗ = 1.051m in figures 5.27c, d and at x∗ = 1.087m in figures 5.27e,

f). Figures 5.27c and 5.27e show a drop of the order of six decades in the spanwise

direction while figures 5.27d and 5.27f show a drop of more than four decades.



135

0.1 1.0 10.0 100.0
β*

, [mm
-1

]

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

E
αα

(β
* )

u
v
w
~β-5/3

~β-7

1 10 100 1000
f
*
, [kHz]

1.0e-08

1.0e-06

1.0e-04

1.0e-02

E
αα

(f
* )

u
v
w
~f

-5/3

~f
-7

0.1 1.0 10.0 100.0
β*

, [mm
-1

]

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

E
αα

(β
* )

0.1 1.0 10.0 100.0
β*

, [mm
-1

]

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

E
αα

(β
* )

1.0 10.0 100.0 1000.0
f
*
, [kHz]

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

E
αα

(f
* )

1.0 10.0 100.0 1000.0
f
*
, [kHz]

1.0e-08

1.0e-06

1.0e-04

1.0e-02

E
αα

(f
* )

(a) (b)

(d)(c)

(e) (f)

Figure 5.27: One-dimensional lateral (left) and temporal (right) power spectra Eαα

for velocity components from CASE 2 and CASE 3 at y+ ≃ 49: (a) x∗ = 1.051m
(CASE 2), (b) x∗ = 1.051m (CASE 2), (c) x∗ = 1.051m (CASE 3), (d) x∗ = 1.051m
(CASE 3), (c) x∗ = 1.087m (CASE 3), (d) x∗ = 1.087m (CASE 3); lines denote
theoretical reference data from Heisenberg (1948); M=3.0, T∗

∞=103.6K, flat plate.
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One convenient measure of compressibility effects in a turbulent boundary layer

is the fluctuation Mach number M ′. A similar quantity widely used in the literature

is the turbulent Mach number Mt. These are defined as

M ′ =

√(
M −M

)2
and Mt =

√
u′′u′′ + v′′v′′ + w′′w′′

a
. (5.15)

Turbulence is only weakly affected by compressibility effects for a fluctuation Mach

number smaller than about 0.3 (Morkovins hypothesis, see Fernholz & Finley, 1980).

Note that different threshold values have been reported in the literature (Guarini

et al., 2000). For the simulations discussed in this chapter, the fluctuation Mach

number exceeds a value of 0.3 only slightly, as can be seen in figure 5.28b. As a con-

sequence, Morkovin’s hypothesis is likely to hold and comparison of statistical values

of the turbulence with incompressible data after proper transformation is justified.

For simulation CASE 3, the wall-normal distribution, for both the turbulent Mach

number and the fluctuation Mach number, exhibits another peak close to the bound-

ary layer edge. A similar peak is also present in the r.m.s. value of the streamwise
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velocity fluctuation u′′ in figure 5.29a. This peak might be caused by the strong co-

herent structures visible in the spanwise average of the wall-normal density gradient

in figure 5.30. Although the turbulent Mach number for CASE 2 looks smoother in

figure 5.29a, the r.m.s. value of the streamwise velocity fluctuation shows a similar

peak as CASE 3 close to the boundary layer edge.
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Figure 5.29: Wall-normal distribution of r.m.s. values for (a) streamwise, (b) wall-
normal and (c) spanwise velocity at x∗ = 1.051m and x∗ = 1.087m for CASE 3;
M=3.0, T∗

∞=103.6K, flat plate.

For CASE 3, figure 5.29 compares the r.m.s. values of all velocity components

(Favre average) to profiles published in the literature from DNS of an incompress-

ible turbulent boundary layer (Spalart, 1988) and the previously mentioned DNS by
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Guarini et al. (2000) of a compressible turbulent boundary layer at Mach 2.5. The

profiles for CASE 3 and of Guarini et al. (2000) are rescaled employing Morkovin’s

density scaling. Except for the peak at the boundary layer edge, the r.m.s. value

for the streamwise velocity fluctuation matches the distribution from Guarini et al.

(2000) and Spalart (1988) at x∗ = 1.087m while the r.m.s. values for the other veloc-

ity components have not yet reached the corresponding reference data. This suggests

that the flow is turbulent, but still may not yet be fully developed.
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Figure 5.30: Contours of spanwise averaged wall-normal density gradient ∂ρ/∂y at
two different instances one fundamental forcing period apart (CASE 3): (a) t1, (b)
t2 = t1 + Tforcing; M=3.0, T∗

∞=103.6K, flat plate.

In the last figure of this section (figure 5.31), a topview (x-z plane) of contours

of instantaneous density is given for two different wall-normal positions. This figure

illustrates the break-up region and the early turbulent region close to the wall (fig-

ure 5.31a) and farther away (figure 5.31b). Dark regions denote high density and

brighter regions denote low density flow. Two-dimensional coherent structures seem

to appear in figure 5.31b. These structures are also present in figure 5.30 and repeat

with half the wave length of the initially forced oblique fundamental waves. The

strong coherence might be an explanation for the overshoot of the skin friction in

figure 5.21a and figure 5.23 when compared with the turbulent reference data.
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Figure 5.31: Topview of contours of instantaneous density ρ for two wall-normal
positions (two wave lengths in spanwise direction): (a) y∗ ≃ 2.2mm (corresponds to
y+ ≃ 49 at x∗ = 1.087m), (b) y∗ ≃ 7.0mm (corresponds to y+ ≃ 163 at x∗ = 1.087m);
M=3.0, T∗

∞=103.6K, flat plate.

5.5 Summary of Mach 3 Oblique Breakdown Simulations

In this chapter, direct numerical simulation of the complete transition path of oblique

breakdown in a supersonic flat-plate boundary layer at Mach 3 was discussed. The

transition process was initiated by a discrete pair of oblique instability waves at low

disturbance amplitudes with frequency f ∗ = 6.36kHz. The downstream development

of this wave pair and the concomitant process of laminar to turbulent transition was

studied from the linear regime to the final breakdown to turbulence. Linear theory

predicts and the DNS confirms that oblique instability waves with the frequency

of interest and the spanwise wavenumber β∗ = 211.52m−1 are strongly amplified
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throughout the computational domain and can trigger oblique breakdown for the

computational setup and realistic experimental conditions.

The early nonlinear transition regime exhibited the typical characteristics for

oblique breakdown: The wavenumber spectrum filled up rapidly in the spanwise

and streamwise direction and the well known pattern of nonlinear wave interactions

initiated by the forced oblique wave pair was observed. Typical flow structures for

the early stages of oblique breakdown were also identified. These structures were pre-

dominantly longitudinal structures with a rope-like shape in the sideview (x-y-plane).

In the later stages of transition, the tip of these structures was lifted up from the wall

and broke down to small-scale structures. The breakup region extended from about

x∗ ≃ 0.84m to x∗ ≃ 0.9m of the computational setup. Close to the end of this breakup

region (downstream of x∗ ≃ 0.9m) a sudden increase in streamwise amplification of

all modes that are not direct descendants of the original oblique wave pair occurred.

This increase in streamwise amplification seemed to be linked to the breakup into

small scales. Downstream of x∗ ≃ 0.9m the entire flow was rapidly contaminated

by small-scale structures and the final breakdown to turbulence was initiated. In an

ideal environment, where oblique breakdown is initiated by two oblique waves with

exactly the same amplitude and phase, the influence of asymmetric modes on oblique

breakdown is only limited. Hence, up to the early turbulent regime, oblique break-

down is mainly symmetric with respect to the spanwise direction. In the DNS using

full Fourier transformation in spanwise direction, asymmetric modes were however

amplified in downstream direction and may have eventually reached high amplitude

values in the later turbulent region.

The DNS data provided strong evidence that a fully turbulent flow was reached.

The most important results are: (1) The turbulent and fluctuating Mach numbers

were sufficiently low such that Morkovin’s hypothesis holds and the comparison of

properly transformed data with results obtained for incompressible turbulent bound-

ary layers is justified. (2) The decay of the skin-friction coefficient in the streamwise
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directions approached correlations and comparable data for turbulent boundary lay-

ers in the literature. (3) A loss of periodicity in the time signals for the investigated

setup occurred downstream of the peak in skin friction. (4) A logarithmic region in

the van Driest transformed mean streamwise velocity profile was formed. (5) The

power spectra of velocity components exhibited well-known theoretical scaling laws.

In conclusion, the DNS data clearly demonstrated that oblique breakdown is a viable

path to sustained turbulence.
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6. Transition in a Mach 8 Boundary Layer on a Sharp

Cone: Spatial Direct Numerical Simulations

6.1 Physical Problem and Flow Parameters

The cone geometry and flow parameters used for this investigation are the same as in

the experiments by Stetson et al. (1983b). The semi-vertex angle of the cone is θc = 7◦

and the cone is considered “sharp” with a nose radius r∗nose = .038mm. The length

of the model used in the experiments, L∗ = 1.016m, is used as the reference length

for the present calculations. The global Reynolds number is 3, 333, 333 corresponding

to a unit Reynolds number of 3.28 × 106 1/m. The free stream Mach number and

temperature are 7.95 and 53.35 K. A summary of the conditions of the approach

flow and after the shock is given in table 6.1. Although the boundary layer edge

conditions are not constant for the flow over a sharp cone, the variation is small

for the computed flow, and in the context of the presented research the after-shock

conditions are considered constant. Figure 6.1 shows the edge Reynolds number varies

by less than 0.5% as a function of streamwise coordinate.

Table 6.1: Approach Flow Conditions
Approach Flow Behind Shock

M[-] 7.95 6.8
Re[-] 3,333,333 4,760,000
T∞[K] 53.35 71.00

6.2 Pulse Simulations

Disturbances were introduced into the flow through a forcing slot. The disturbances

were forced for a short duration by a “pulse” in time. This type of forcing introduces

a broad spectrum of frequencies in one or multiple specified azimuthal modes. The
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Figure 6.1: Boundary layer edge Reynolds number as a function of downstream po-
sition for the computed baseflow. Sharp cone, M = 7.95, T = 53.35K.

purpose of these simulations was to compare stability behavior extracted from the

simulations against linear stability calculations as well as to guide the selection of

frequencies for continuous forcing simulations (discussed in section 6.4). The first step

is to validate the mean flow. Comparison of steady baseflow profiles at Rx = 2024

with Mangler transformed similarity solutions and profiles obtained from the finite

volume code are presented in figure 6.2.

To simulate linear unstable waves with kc = 0 (defined in Chapter 4), a low

amplitude (Ain = 10−6) axisymmetric pulse is introduced into the flow which develops

into a two-dimensional wave packet containing a broad spectrum of frequencies. The

Fourier spectrum of the pulse, taken in the center of the disturbance strip, is shown

in figure 6.3 and illustrates the broad range of frequencies produced by the forcing.

Using temporal Fourier decomposition, the streamwise evolution of amplitude and

phase information can be extracted for discrete frequencies. The growth rate and

streamwise wave number of a given mode are calculated as



144

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

y

U
’finite volume code’ profile

T
’finite volume code’ profile

ρ
’finite volume code’ profile

U
’finite difference code’ profile

T
’finite difference code’ profile

ρ
’finite difference code’ profile

U
similarity profile

T
similrity profile

ρ
similarity profile

Figure 6.2: Comparison of meanflow profiles at Rx = 2024 with similarity solutions
and profiles obtained in the precursor calculation (finite volume code). Note that for
visualization purposes, T has been scaled by a factor of 0.2. Sharp cone, M = 7.95,
T = 53.35K.

αi = − ∂

∂x

(
ln
A(x)

A0

)
Rx

Re

, αr =
∂

∂x
(θ(x)). (6.1)

Comparison of the real and imaginary parts of the streamwise wave number with

results from Tumin’s LST solver are given in figure 6.4 for f ∗ = 73.782kHz. The

growth rates from DNS are computed based on the wall-normal maximum of the

u-velocity disturbance. Overall, the agreement is reasonable. There are deviations in

both the real and imaginary parts of the streamwise wave number which may be due

to non-parallel effects which are neglected in the context of LST.

The streamwise distribution of the N-factors, which are computed as ln(An(x)
An,0

),

of several frequencies are given in figure 6.5. As reported by Schneider (2001a),

N-factors corresponding to transition in experiments range between approximately

5 and 10 depending on the background disturbances present in the particular wind

tunnel. For the present DNS, the wave to first reach an N-factor of 5.5 has frequency

F = 9.1 × 10−5 (f ∗ = 79.255kHz). Based on the linear growth, this frequency was

chosen as the primary disturbance wave for controlled transition simulations discussed
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Figure 6.3: Fourier spectrum (amplitude as a function of frequency) of the disturbance
input in the v-velocity for the low-amplitude 2D pulse simulation. Sharp cone, M =
7.95, T = 53.35K.
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Figure 6.4: Comparison of DNS data with LST data from Tumin’s solver for a low-
amplitude 2D pulse a) Streamwise wave number, αr (left) b) Growth rate, αi (right).
Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.5: The downstream amplitude development (N-factor) of several frequencies
from 2-D pulse DNS. F = 9.1 × 10−5 (f ∗ = 79.255kHz) is the first to reach an
N-factor of 5.5. Sharp cone, M = 7.95, T = 53.35K.

in section 6.4. The relatively low N-factor is chosen because disurbances will be forced

at large amplitudes for simulations of nonlinear transition.

6.2.1 Nonlinear Growth of Low-Frequencies

In the growth curves for u-velocity disturbances obtained from 2-D pulse simulations

it was apparent that several low-frequency waves experienced a rapid increase in

growth rate. For example, in figure 6.6, at approximately Rx = 2000, several low-

frequencies (a representative band is colored in red, modes 1-30 corresponding to

frequencies 5.48 ∗ 10−7 < F < 1.6 ∗ 10−5) suddenly become strongly amplified. Given

that the amplitude of the initial pulse-disturbance for this simulation was low (Ain =

10−6), it was expected that the disturbance development should remain linear for

the extent of the computational domain (because products of disturbances are of

negligible amplitude). Thus, such rapid growth of frequencies well below those that

LST predicts to be strongly amplified is clearly worth exploring further.
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Figure 6.6: Streamwise development of several disturbance frequencies (all with kc =
0) shown by u-velocity disturbance amplitudes. Low-frequencies, 5.3 ∗ 10−7 < F <
1.6 ∗ 10−5, are colored in red with higher frequencies in gray. Forcing amplitude
Ain = 10−6. Sharp cone, M = 7.95, T = 53.35K.

To confirm that the rapid growth is indeed caused by nonlinear interactions, the

effect of the initial pulse amplitude was studied. Figure 6.7 shows the amplitude

development for a pulse with Ain = 10−9 and Ain = 10−3. For the sufficiently low

amplitude of 10−9, the sudden change in growth rate is no longer observed until very

close to the end of the computational domain (note that the “noisy” data in this

simulation is due to the fact that the amplitudes are sufficiently low they are near

the order of round-off error). As the amplitude is increased to 10−3, the shift in

growth rate occurs even further upstream relative to the Ain = 10−6 case and the

low-frequencies reach amplitudes similar to those of the most amplified disturbances

in the simulations. Clearly, this sudden increase in growth rate is strongly related to

the initial forcing amplitude which is an indicator that nonlinearity plays a key role.

As a comparison, wall-pressure disturbance amplitudes are also presented for the

highest amplitude simulation in figure 6.8. In the wall-pressure, the increase in growth

rate is not as sudden and the amplitudes (relative to the most amplified modes)
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a)

b)

Figure 6.7: Streamwise development of several disturbance frequencies (all with kc =
0) shown by u-velocity disturbance amplitudes for two different pulse amplitudes.
Low-frequencies ,5.48∗10−7 < F < 1.6∗10−5, are colored in red with higher frequencies
in gray. a) Forcing amplitude Ain = 10−9 b) Forcing amplitude Ain = 10−3. Sharp
cone, M = 7.95, T = 53.35K.

are not as high. The wall-normal u-velocity disturbance amplitude distributions for

F = 5.48 ∗ 10−7 are shown at several downstream locations in figure 6.9. There is a

clear change in the overall shape of the eigenfunction upstream and downstream of
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Figure 6.8: Streamwise development of several disturbance frequencies (all with kc =
0) given by wall-pressure disturbance amplitudes. Low-frequencies ,5.48 ∗ 10−7 <
F < 1.6 ∗ 10−5, are colored in red with higher frequencies in gray. Forcing amplitude
Ain = 10−3. Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.9: Wall normal amplitude distributions of u-velocity disturbances at several
downstream locations for F = 5.48 ∗ 10−7. Forcing amplitude Ain = 10−6. Sharp
cone, M = 7.95, T = 53.35K.
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Figure 6.10: Streamwise evolution of the u-velocity disturbance amplitude for a single
mode, F = 5.48 ∗ 10−7, continuously forced with wall-normal blowing and suction.
Forcing amplitude Ain = 10−6. Sharp cone, M = 7.95, T = 53.35K.

the shift in growth rate.

6.2.2 Continuous Forcing of Low Frequency Waves

To further confirm that this rapid growth is indeed a nonlinear mechanism, simula-

tions with continuous forcing were performed. Initially, only a single mode is forced

(F = 5.48 ∗ 10−7) with an amplitude of 10−6. As expected from LST, this low fre-

quency disturbance is damped throughout the domain (see figure 6.10).

The next step was to force two disturbance waves and attempt to duplicate the

rapid shift in growth rate observed when a broad spectrum of disturbances were

present. A “primary” disturbance wave was chosen with F = 8.23 ∗ 10−5 because

it is the wave with the highest amplitude at the point of the rapid growth of the

low-frequency modes from the pulse simulation with Ain = 10−6 (see figure 6.6). In

order to reduce the computational time necessary for the disturbance to travel to the

end of the domain, the low-frequency wave was chosen as F = 5.48 ∗ 10−6, a factor
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Figure 6.11: Streamwise evolution of the u-velocity disturbance amplitude for con-
tinuous forcing of 2 modes,F = 5.48 ∗ 10−6-mode 1,0 and F = 8.23 ∗ 10−5-mode
15,0, continuously forced with wall-normal blowing and suction. Forcing amplitude
A1,0 = A15,0 = 10−4. Sharp cone, M = 7.95, T = 53.35K.

of ten larger than the lowest frequency plotted in figure 6.6 (which was investigated

as the single forced disturbance). This frequency is still well below those that LST

predicts to be strongly amplified and is within the band of modes that were suddenly

amplified in the pulse simulations.

The streamwise development of u-velocity disturbance amplitudes is shown in

figure 6.11. The fundamental frequency, mode 1 in the figure, corresponds to the low-

frequency disturbance, while the high frequency “primary” wave is mode 15. Both

disturbances were forced with an amplitude of 10−4. Initially, mode 1 is damped.

However, just downstream of the point where modes 14 and 16 (which are nonlinearly

generated due to the forcing of modes 1 and 15) reach the amplitude of mode 1,

the low-frequency wave suddenly becomes strongly amplified. The amplification of

the low-frequency only after additional modes have surpassed its amplitude is an

indication of a possible 3-wave interaction - or resonance triad.

Three wave interactions, known as resonance triads, are a nonlinear mechanism
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Table 6.2: Streamwise Wave Numbers.
Frequency Harmonic Streamwise wave number

1 23.2
14 395.1
15 418.9
16 445.3

which is possible in equations with quadratic nonlinearities (such as the Navier-Stokes

equations). The resonance conditions for such an interaction (equation 6.2) are given

by relations between the streamwise, spanwise and temporal wave numbers which

ensure that two waves quadratically interacting will produce the third wave.

α1
r + α2

r = α3
r

β1 + β2 = β3

ω1
r + ω2

r = ω3
r

(6.2)

For the present simulations, all the waves involved are axisymmetirc and thus

β = 0. For this situation, the resonance condition only requires that the frequency and

streamwise wave number conditions are met. Since the frequency is directly related to

the Fourier harmonic (or mode number in the previously discussed simulations), the

resonance condition on the frequency is automatically met between modes 1, 14 and

15 or 1, 15 and 16 in figure 6.11. The only remaining condition is on the streamwise

wave number. The streamwise wave numbers for the four disturbance modes are

listed in table 6.2. The resonance condition on the streamwise wave number is close

to being met considering either of two triads - modes 1, 14 and 15 or modes 1, 15

and 16. However, between modes 1,14 and 15 the resonance condition is more closely

fulfilled as α1,0
r + α14,0

r ≈ 418 which is almost exactly the wave number of mode 15.

The final step in confirming the existence of this resonance triad was performing

a simulation where all three waves were forced. Figure 6.12 shows the evolution of

u-velocity disturbance amplitudes with mode 1 forced at an amplitude of 10−8 and
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Figure 6.12: Streamwise evolution of the u-velocity disturbance amplitude for con-
tinuous forcing of 3 modes,F = 5.48 ∗ 10−6-mode 1,0, F = 7.67 ∗ 10−5-mode 14,0
and F = 8.23 ∗ 10−5-mode 15,0, continuously forced with wall-normal blowing and
suction. Forcing amplitude A1,0 = 10−8 A14,0 = A15,0 = 10−4. Sharp cone, M = 7.95,
T = 53.35K.

modes 14 and 15 forced with amplitudes of 10−5. For this disturbance environment,

the low-frequency wave is rapidly amplified after only a short downstream distance

and remains amplified for the rest of the computational domain. This is yet a further

confirmation that the sudden growth of low-frequency waves in the pulse simulations is

caused by resonance triads made up of axisymmetric waves. In the broad disturbance

spectrum of the pulse simulations, different interactions in the band of relatively high

(second mode) frequencies appear to cause a resonance which leads to rapid, nonlinear

growth of a band of low frequency waves.

6.2.3 Effect on Oblique Waves

To address the question of whether or not a similar rapid growth of low-frequency

oblique waves (kc 6= 0) occurs, a pulse simulation where a broad range of frequencies

were seeded at kc = 20 was performed. Given that the low-frequency growth has
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Figure 6.13: Streamwise evolution of the u-velocity disturbance amplitudes of modes
n,1 (kc = 20) for a three-dimensional pulse disturbance. Forcing amplitude Ain =
10−6. Sharp cone, M = 7.95, T = 53.35K.

been demonstrated to likely be caused by resonance triads, it seems unlikely that

such interaction would occur for three waves with the same kc and kc 6= 0 due to

the inability to fulfill the resonance condition on the azimuthal wave number. This

assumption is confirmed by the results presented in figure 6.13 which show the devel-

opment u-velocity disturbance amplitudes for several frequencies with kc = 20.

An additional simulation, in which both modes (n,0) and modes (n,1) are forced

simultaneously by a pulse disturbance was performed. Note that for mode (n,k), n

corresponds to multiples of some fundamental frequency (which is based on the total

simulation time), and k corresponds to multiples of the fundamental azimuthal mode

number (which is kc = 20 for this case). This simulation showed that rapid growth

of oblique, low-frequency waves occurs in the presence of axisymmetric disturbances.

Figure 6.14 shows the development of u-velocity disturbances for both the axisym-

metric and oblique waves. It is clear that the oblique waves are heavily influenced

by the axisymmetric waves as low-frequencies experience rapid growth at exactly the



155

a)

b)

Figure 6.14: Streamwise evolution of the u-velocity disturbance amplitudes with
modes (n,0) and (n,1) forced simultaneously by a pulse disturbance. Forcing am-
plitude Ain = 10−6. In the presence of axisymmetric disturbances, low-frequency
oblique waves experience rapid growth at ∼ Rx = 2000 a) Modes n,0 b) Modes n,1
(kc = 20). Sharp cone, M = 7.95, T = 53.35K.



156

0 0.2 0.4 0.6 0.8 1
u’/u’

max

0

0.005

0.01

0.015

y

0 0.5 1
u’/u’

max

0

0.005

0.01

0.015

y

2D Disturbances Present
Without 2D Disturbances Present

Figure 6.15: Wall-normal u-velocity disturbance amplitude distributions atRx = 2499
for a) Mode 1,0 (F = 5.48 ∗ 10−7), (top) b) Mode 1,1 (kc = 20, F = 5.48 ∗ 10−7),
(bottom). Open symbols are without the presence of 2D disturbances (modes n,0).
Solid line is with 2D disturbances present. Forcing amplitudes An,0

in = An,1
in = 10−6.

Sharp cone, M = 7.95, T = 53.35K.
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same point that the phenomena occurs for the axisymmetric disturbances.

Figure 6.15 shows the drastic changes in the wall-normal amplitude distributions

of u-velocity disturbances for a low-frequency (F = 5.48 ∗ 10−7) oblique disturbance

wave at Rx = 2499 when axisymmetric disturbances are present. For reference, the

amplitude distribution of the axisymmetric mode is plotted for the same frequency

at the same location. Clearly, this nonlinear mechanism can have a large influence

on both axisymmetric and oblique disturbances.

6.2.4 Preliminary Summary of Pulse Simulations

Simulations using a pulse (in time) type disturbance input were performed for ax-

isymmetric waves to extract stability data for comparison with LST. Wall-normal

amplitude distributions as well as streamwise wave numbers and growth rates showed

good agreement with results from Tumin’s LST solver. In the pulse simulations it

was apparent that low frequency waves underwent a sudden and rapid increase in

growth rate after a certain streamwise location. The point of this sudden growth

shifted upstream for increasing pulse amplitude. This phenomenon was thoroughly

investigated and determined to be the result of resonance triads caused by a difference

interaction of two high-frequency, second mode waves within the most unstable band

expected from LST. These two-waves interact with a third, low-frequency wave caus-

ing rapid amplification of the low-frequency. Similar behavior was not observed in

simulations of pulse type disturbance for one specific higher azimuthal mode (kc = 20)

presumably because the resonance condition on the spanwise wave number was no

longer met. However, in the presence of two-dimensional disturbances, low-frequency

oblique waves also become strongly amplified at the same streamwise position as the

onset of the amplification for the two-dimensional modes. The sudden increase in

growth rate is accompanied by a change in character of the wall-normal amplitude

distribution of the oblique mode.
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6.3 Three-Dimensional Wave Packets

6.3.1 Simulation Setup

In order to observe which nonlinear mode interactions become dominant with a broad

spectrum disturbance environment, wave packets were introduced into the boundary

layer. The wave packets were created by a short duration pulse disturbance in the wall

normal velocity from a small hole in the cone surface (analogous to the incompressible

experiments by Medeiros & Gaster (1999)). The impulse type disturbance in time and

space creates a broad spectrum of frequencies and azimuthal modes (wave angles).

These disturbances convect downstream and initially grow or decay according to

linear theory. At some point, after the amplitudes have grown large enough, nonlinear

interactions begin occurring. No particular nonlinear mechanism is forced, and thus

the wave packet can be considered as a model for natural transition that would occur

with a broad spectrum of disturbances.

Figure 6.16: Schematic of the physical domain used for the wave packet simulations.
The physical domain used for the simulations extends from x∗ ≈ .11m to x∗ ≈ 1.86m
(718 < Rx < 2957). Sharp cone, M = 7.95, T = 53.35K.

A schematic of the physical domain used for the simulations is shown in figure

6.16. The computational domain extends in the streamwise direction from x∗ ≈ .11m
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to x∗ ≈ 1.86m (718 < Rx < 2957), not including the buffer domain applied to the

outflow. The azimuthal extent of the domain is 1/3 of the cone’s circumference. The

large azimuthal domain is required due to the high degree of azimuthal spreading

as the wavepacket travels downstream. The hole through which the wave packet is

initially generated is approximately circular with a diameter of d∗ = 13.14mm.

A stability diagram for axisymmetric waves (kc = β = 0) computed with Mack’s

stability solver is shown in figure 6.17. Since two-dimensional second mode waves are

most amplified for Mach 8, it is expected that the initial development of the wave

packets (given that the most amplified frequencies are seeded) should be according

to the 2D stability diagram shown below. Additionally, slightly oblique waves (low

kc) will exhibit similar stability behavior to the two-dimensional waves.

Figure 6.17: Stability diagram for axisymmetric waves shown as contours of constant
amplification rate, αi, in the reduced frequency-local Reynolds number plane. Sharp
cone, M = 7.95, T = 53.35K.
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6.3.2 Low Amplitude Wave Packet

A wave packet forced with an initial amplitude of 10−5 was introduced into the flow.

The main purpose is to allow for comparison with higher forcing amplitude simulations

that will produce strong nonlinear interactions. A disturbance spectrum taken over

the center of the forcing hole is shown in figure 6.18 detailing the broad frequency

spectrum introduced by the pulse disturbance. The range of azimuthal mode numbers

introduced is somewhat narrow, however it should be noted that near the upstream

edge of the cone, the local circumference is quite small and thus even waves with

small kc can have strongly oblique wave angles.

The disturbance spectrums plotted by contours of wall pressure amplitude in the

frequency-azimuthal mode number plane at two downstream locations are shown

in figure 6.19. Due to the low amplitude of the initial pulse that produced the

wave packet, the amplification of disturbance modes should be governed by LST. As

expected, the most dominant disturbances are two-dimensional and the frequency

decreases in downstream direction as the boundary layer grows. Waves with small

kc) at similar frequencies are also strongly amplified. There is some evidence of weak

nonlinear interactions in the final downstream location as “legs” begin to appear in

the spectrum reaching to slightly lower frequencies. However, the amplitudes are

quite low relative to the strongest modes.

The development of the structure of the wave packet is shown in physical space in

figure 6.20 by contours of wall pressure disturbance on the cone surface at several time

instances. The early stages of the development of the wave packet feature a strong

2D wave in the center and oblique waves in the tail. There is also a component

traveling in front of the main disturbances which is most likely the “fast” acoustic

waves which move at a speed 1+ 1
M

. The main component of the wave packet remains

two-dimensional, but there is a small amount of azimuthal modulation towards the

end of the domain.
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Figure 6.18: Disturbance spectrum showing amplitudes of wall-pressure disturbances
in the frequency-azimuthal mode number plane in the center of the forcing hole. A
broad spectrum of frequencies and azimuthal modes are introduced into the flow.
Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.19: Wall-pressure disturbance spectrums for the low amplitude wave packet
(Ain = 10−5). a) x∗ = 1.107m (Rx = 2277) b) x∗ = 1.847m (Rx = 2943). Sharp cone,
M = 7.95, T = 53.35K.
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Figure 6.20: Development of wall pressure disturbances in the low-amplitude wave
packet on the cone’s surface. a) t=.02 (t∗ = 17.4 ∗ 10−3ms) b) t=.1 (t∗ = .087ms)
c) t=.2 (t∗ = .174ms) d) t=.3 (t∗ = .261ms) e) t=.4 (t∗ = .349ms) f) t=.5 (t∗ =
.436ms). Sharp cone, M = 7.95, T = 53.35K.
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6.3.3 High Amplitude Wave Packet

In order to observe the relevant nonlinear interactions that occur with a broad spec-

trum of disturbances, a wave packet with amplitude 10−2 was simulated. The initial

amplitude is small enough that the downstream development of the wave packet

is initially governed by LST but large enough that by the end of the computa-

tional domain there are strong nonlinear interactions occurring. Figure 6.21 shows

contours of the wall pressure disturbance in the frequency-azimuthal mode num-

ber plane at x∗ = .89m (Rx = 2042), x∗ = 1.01m (Rx = 2175), and x∗ = 1.13m

(Rx = 2301). The structure of the spectrum is similar to the the low amplitude

wave packet, and generally follows expected behavior from LST. The most ampli-

fied waves are axisymmetric. Weakly three dimensional waves are also amplified,

but not as strongly as the 2D modes. Note that the dimensional frequency range of

50 − 100kHz seen in the DNS corresponds to a reduced frequency range of approxi-

mately 5.8 ∗ 10−5 < F < 1.18 ∗ 10−4.

Figure 6.22 presents wall pressure disturbance spectrums further downstream at

x∗ = 1.25m (Rx = 2421), x∗ = 1.37m (Rx = 2535), x∗ = 1.61m (Rx = 2749),

and x∗ = 1.85m (Rx = 2947). The disturbances grow as they travel downstream

and eventually reach amplitudes that initiate strong nonlinear interactions. The

spectrum initially broadens as the disturbances spread to higher azimuthal modes.

The disturbances also seem to spread to slightly lower frequencies which creates 2

“legs” extending downward from the main disturbance. At x∗ = 1.37m, the spectrum

continues to broaden and a low frequency, 2D component appears in the spectrum. At

the next location, x∗ = 1.61m, a higher harmonic of the 2D disturbance component

appears and the disturbances continue to spread to higher azimuthal modes near the

most amplified frequency. Notably absent is evidence of subharmonic resonance which

was reported in the Mach 6 experiments by Bountin et al. (2008). Figure 6.23 shows

the wall pressure disturbance spectrum at x∗ = 1.85m (Rx = 2947), with the contour
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levels adjusted to be more appropriate for the disturbance levels at this location. With

these contour levels, the only relevent disturbances appear to be within a narrow band

of frequencies.
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Figure 6.21: Disturbance spectrums of the high-amplitude wave packet shown in
contours of wall-pressure disturbance amplitudes in the frequency-azimuthal mode
number plane at different downstream locations. Disturbance development is primar-
ily linear for these locations with a narrow band of amplified two-dimensional and
slightly oblique waves. a) x∗ = .89m (Rx = 2042) b) x∗ = 1.01m (Rx = 2175) c)
x∗ = 1.13m (Rx = 2301). Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.22: Wall-pressure disturbance spectrums of the high-amplitude wave packet
at locations farther downstream. Nonlinear interactions begin occurring and become
quite strong by the final downstream position. The modes with the most sudden
increase in amplitude, an indicator of strong nonlinear growth, are higher azimuthal
harmonics in the band of amplified frequencies. a) x∗ = 1.25m (Rx = 2421) b)
x∗ = 1.37m (Rx = 2535) c) x∗ = 1.61m (Rx = 2749) d) x∗ = 1.85m (Rx = 2947).
Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.23: Wall-pressure disturbance spectrum of the high-amplitude wave packet
at x∗ = 1.85m (Rx = 2947) with contour levels adjusted. Sharp cone, M = 7.95,
T = 53.35K.

The generation of frequency harmonics and higher azimuthal modes are clear in-

dications of strong nonlinear interactions. The strongest nonlinear interaction, iden-

tified by the modes which show sharp increases in amplitude from one downstream

position to the next, is the spreading of disturbances to higher azimuthal modes in

a relatively narrow band of frequencies. This feature of the spectrum suggests that

fundamental resonance between 2D and 3D waves may be the dominant nonlinear

interaction for these flow conditions.

The development of the wave packet in physical space on the cone’s surface (Fig-

ure 6.24) is presented by visualizing contours of wall pressure disturbance. These

visualizations give a general picture of the physical extent of the wavepacket and

how it develops and grows as it travels downstream. The initial structure of the

packet is very similar to the low amplitude case (figure 6.20). The packet is two-

dimensional in the center with lower amplitude oblique wave components evident

near the azimuthal edges and especially at the tail. The packet spreads in the az-

imuthal direction and stretches in the streamwise direction as it travels downstream.
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The streamwise stretching is due to the superposition of several modes with differing

phase velocities. As the wave packet reaches downstream locations where nonlinear

interactions start occurring, it becomes increasingly modulated in the spanwise di-

rection. The wavelength of the spanwise modulation is rather large, but near the

end of the computational domain there is evidence of shorter azimuthal-wavelength

modulations of the main two-dimensional wave front. These are most likely due to

the side peaks at high wave numbers evident in the disturbance spectrums in Fourier

space.

Detailed views of the late-stage physical structure of the wave packet on the cone

surface are shown in Figure 6.25. Wall pressure contours (left) and vortical structures

in the wave packet identified with isosurfaces of Q = 50 (right) near the end of

the computational domain. The Q-surfaces are colored with contours of azimuthal

vorticity. The general structure of the packet is similar regardless of the disturbance

quantity. The short wave length spanwise modulations are clearly evident in the

vorticity contours. It is also apparent that there is a clearly dominant streamwise

wavelength associated with the wave packet. At the later downstream locations, the

physical nature of the packet is quite different when compared to the low-amplitude

case (figure 6.20). Most notable are oblique disturbances emanating from the tail

which do not appear in the low-amplitude case.

The space/time evolution of the wave packet is also presented by several instan-

taneous snapshots of the streamwise distribution of wall-pressure disturbances at the

centerline of the wave packet. The initial development of the disturbances is shown

in figure 6.26. The nondimensional time differential between each snapshot is ∆t = .1

corresponding to a physical time of ∆t∗ ≈ 0.087ms. The dashed lines represent an

approximate location for the tail and front of the wavepacket. An estimate for the

convection speed of the front and tail for the time interval shown in 6.26 can be com-

puted by noting the change in x-location of each end of the wavepacket at each interval

∆t. An approximation for the speed of the tail is ∼ 873m/s and the speed of the
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Figure 6.24: Instantaneous contours of wall pressure disturbances in the high-
amplitude wave packet on the cone surface illustrating the development of the physical
structure of the wave packet and the extent to which it spreads by the time it has
reached the end of the computational domain. Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.25: (Left) Detailed view of the wall pressure disturbances near the down-
stream end of the computational domain. (Right) Isosurfaces of Q = 50 colored with
contours of azimuthal vorticity. The two-dimensional structure of the wavepacket
is strongly modulated in the azimuthal direction. Clearly evident in the vorticity
contours are the shorter azimuthal wavelength modulations of the structure near the
front of the wave packet. Sharp cone, M = 7.95, T = 53.35K.

front is ∼ 1164m/s. Since the lines passing through the tail and front of the packet

remain straight, it is clear that speeds of the front and tail remain approximately

constant. It should be noted that 1164m/s corresponds to a nondimensional speed

of 1 while 873m/s corresponds to a nondimensional speed of .75. One would expect

the dominant modes in the wave packet to have phase speeds between 1 − 1
M

= .875

and 1. One possible explanation for the low speed of the tail is that these waves

have much lower amplitudes than the dominant waves of the packet and therefore it

is reasonable to assume that they are most likely oblique waves (which according to

LST are less amplified) and thus the phase speed in the streamwise direction would

be less than 1 − 1
M

accounting for the wave angle.

The continued space/time development in the centerline of the wave packet is

presented in 6.27. Time increases vertically along the left colum and continues to

increase going up the right colum. Each frame corresponds to an increase in time of

∆t∗ ≈ 0.087ms. The left colum ranges from time .8 to 1.2 (.698ms < t∗ < 1.047ms)

and the right from time 1.3 to 1.7 (1.135ms < t∗ < 1.484ms). It is apparent that as

the wave packet develops an increasing number of modes reach amplitudes significant

enough to modulate the overall spatial distribution of disturbance. By the final time
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instances shown, the character of the packet has changed significantly and there seems

to be a highly modulated structure at the front of the packet. This is most likely

due to the strong nonlinear interactions which are apparent from the disturbance
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Figure 6.26: Instantaneous snapshots of the streamwise distribution of wall-pressure
disturbancesthe in the centerline of the high-amplitude wave packet showing the initial
development of the wave packet from .1 < t < .6 (.087ms < t∗ < .522ms). The
nondimensional time difference between each frame (time increasing in the vertical
direction) is 0.1 corresponding to ∆t∗ ≈ 0.087ms. Sharp cone, M = 7.95, T =
53.35K.
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Figure 6.27: Instantaneous snapshots of the streamwise distribution of wall-pressure
disturbances in the centerline of the high-amplitude wave packet from (left) time .8
to 1.2 (.698ms < t∗ < 1.047ms) (right) time 1.3 to 1.7 (1.135ms < t∗ < 1.484ms). At
the later time instances the structure of the front of the packet is highly modulated
due to nonlinear interactions. Sharp cone, M = 7.95, T = 53.35K.



172

spectrums.

As a comparison, the disturbance spectrums of the high-amplitude wave packet

are also shown as contours of the maximum u-velocity disturbance. Note that the y-

location where the u-disturbance amplitude is taken is chosen independently for each

mode based on the position of the maximum in the wall-normal disturbance amplitude

distribution for each mode. Figure 6.28 shows spectrums at the same downstream

locations as the wall pressure spectrums (figure 6.21) for the early development of

the disturbance modes. The overall structure of the spectrum is similar to the wall-

pressure disturbance spectrums, however there is a notable low frequency component

that is first visible at x∗ = 1.01m (Rx = 2175) and is quite apparent by x∗ = 1.13m

(Rx = 2301).

The low frequencies are amplified in approximately the same band of azimuthal

modes as the main disturbance component. This component of the disturbance spec-

trum appears much stronger in the u-velocity in comparison to wall-pressure, where

it is not evident at all until x∗ = 1.37m (Rx = 2535), and still remains at small

amplitude levels relative to the strongest disturbances even at the last downstream

location. It seems likely that these high amplitude disturbances are caused by the

resonance triads identified previously in the pulse simulations (section 6.2). The low

frequency modes, which should not be strongly amplified according to LST, appear

to grow due to an interaction between a pair of unstable waves within the band of

amplified frequencies. As was previously discussed (see section 6.2), the interactions

seem to be most relevent for two-dimensional disturbances but are capable of spread-

ing to higher azimuthal modes. This notion is supported by the observation that the

maximum frequency difference within the band of strongly amplified disturbances

(centered at ∼ 75kHz for x∗ = 1.13m) roughly corresponds to the highest “low”

frequency (∼ 15kHz) apparent in the spectrum at this position. This is a further

confirmation of the existence of the resonance triads given a broad spectrum, 3D

disturbance environment.
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Disturbance spectrums of u-velocity are also shown further downstream (6.29)

at locations corresponding to the wall-pressure spectrums in figure 6.22. At these

locations, the strong low-frequency component is apparent. At the final downstream

location, x∗ = 1.85m (Rx = 2947), the low frequency disturbances are a dominant
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Figure 6.28: Disturbance spectrums of the high-amplitude wave packet shown in con-
tours of u-velocity disturbance amplitudes in the frequency-azimuthal mode number
plane at different downstream locations. The y-location at which the disturbances
amplitudes are shown is picked based on the maximum in the wall-normal u-velocity
amplitude distribution computed for each mode. a) x∗ = .89m (Rx = 2042) b)
x∗ = 1.01m (Rx = 2175) c) x∗ = 1.13m (Rx = 2301). Sharp cone, M = 7.95,
T = 53.35K.
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Figure 6.29: u-velocity disturbance spectrums of the high-amplitude wave packet at
locations farther downstream. A low-frequency disturbance component appears much
stronger in u-velocity compared to wall-pressure. By the final downstream location,
the amplitudes of the low-frequency components are comparable to the maximum
amplitudes in the entire disturbance spectrum. a) x∗ = 1.25m (Rx = 2421) b)
x∗ = 1.37m (Rx = 2535) c) x∗ = 1.61m (Rx = 2749) d) x∗ = 1.85m (Rx = 2947).
Sharp cone, M = 7.95, T = 53.35K.
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feature in the spectrum.

6.3.4 Preliminary Summary of Wave Packet Simulations

Both low amplitude (Ain = 10−5) and high amplitude (Ain = 10−2) wave packets

were introduced into the flow. The development of the disturbance spectra of the low

amplitude wave packet showed no evidence of strong nonlinear interactions. The most

amplified disturbances remained two-dimensional (kc = 0) throughout the domain.

At the final downstream location, the spectrum has spread to higher azimuthal modes

within the band of unstable frequencies. The amplitude of modes with kc = 20 is

within one order of magnitude of the largest disturbances. There are also relatively

low amplitude “legs” stretching to lower frequencies at small kc. The physical nature

of the wave packet is highly 2D in the center with oblique waves in the tail (especially

in the initial development). In the initial stages of the development of the wave

packet, the wave angles appear to be of 45◦ or greater (see figure 6.20 b). This is

likely due to the fact that even at small azimuthal mode numbers, the wave angles

can be large due to the small local circumference of the cone. As the packet travels

downstream the 2D component becomes dominant.

The high amplitude wave packet initially develops similarly to the low amplitude

case. However, as the amplitudes grow, strong nonlinear interactions become appar-

ent. Based on the wall pressure disturbance, the strongest nonlinear growth appears

to be in waves with kc > 20 within the primary band of unstable frequencies. The

generation of the second harmonic of the most dominant frequencies, as well as a low

frequency component are also evident, but fairly weak. This suggests that funda-

mental resonance of 2D and 3D waves may be a dominant mechanism for these flow

conditions. Spectra of u-velocity disturbances show similar behavior as wall-pressure

with the exception of the low-frequency component becoming much more pronounced.

The low-frequencies reach amplitudes similar to those of the strongest disturbance
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modes in the spectrum. The low-frequency band of disturbances spreads to nearly all

higher azimuthal mode numbers resolved in the simulation. These disturbances may

be related to the resonance triads discussed in section 6.2 which appear to be caused

by an interaction of two modes that are close in frequency. The physical structure of

the nonlinear wave packet is generally two-dimensional with oblique waves evident in

the tail. By the end of the computational domain the wave structures have become

modulated in the azimuthal direction.

6.4 Controlled Transition Simulations

6.4.1 Disturbance Generation and Post Processing

The simulations presented in this chapter feature controlled disturbance input gener-

ated by time harmonic wall-normal blowing and suction over a disturbance strip near

the upstream end of the computational domain. The generation of these disturbances

is governed by a boundary condition for the v-velocity at the wall,

v(x, y = 0, ϕ, t) = A(xp)cos(−ωt+ θ)cos(kcϕ), (6.3)

with xp defined as

xp =
2x− (x2 + x1)

x2 − x1

− 1 < xp < 1. (6.4)

The streamwise distribution for the velocity, A(xp), is a fifth order polynomial

representing a dipole which is smooth everywhere including the endpoints (see Harris

(1997)) and is shown schematically in figure 6.30.

The disturbances are tracked in the downstream direction according to their mode

numbers n and k, where n corresponds to the harmonic in time and k corresponds to

the multiple of the fundamental azimuthal mode number. Since Fourier modes are

used in the azimuthal discretization (see section 3.2), the time dependent behavior

of each azimuthal mode is output separately for each azimuthal mode from the code.
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Figure 6.30: Schematic of the streamwise velocity distribution in the forcing slot used
for inputting controlled disturbances.

In order to decompose the time history into temporal Fourier harmonics, fast Fourier

transforms are employed in post-processing according to

φ̂0 ∼
1

2nt

nt−1∑

t=0

φt

φ̂n ∼ 1

nt

(
nt−1∑

t=0

φtcos(
2πnt

nt

) +
nt−1∑

t=0

φtsin(
2πnt

nt

)).

(6.5)

In equation 6.5, ˆφ0,0 represents a time and azimuthal averaged flow quantity. The

average flow field is used to calculate the skin friction coefficient,

cf = 2
µ̄w

Reedge

∂ū

∂y
|w. (6.6)

The computed skin friction can be compared with the theoretical turbulent value

suggested by White (1991),

cf,plate ≈
.455

S2ln2( .06µ̄e

Sµw
Rex

√
Te

Tw
)
, (6.7)

with

S =
1

arcsinA arcsinB

√
T̄w

T̄e

− 1 (6.8)
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and A and B are defined by

A =
2a2 − b√
b2 + 4a2

B =
b√

b2 + 4a2

a =

√
γ − 1

γ
M2

e

T̄e

T̄w

b =
¯Taw

T̄w

− 1.

(6.9)

The overbar represents an average flow quantity while the subscript w denotes the

wall values and the subscript e denotes the boundary layer edge values. However,

the adiabatic wall temperature ( ¯Taw), is not known and must be estimated according

to the turbulent recovery factor, rturb ∼ Pr1/3 ∼ 0.9. An additional correction

factor must also be included because the skin friction estimate is only applicable for

flows over a flat plate. For a cone, White (1991) suggests the correction cf,cone =

1.15 ∗ cf,plate.

Within the context of fluid dynamics simulations, it is also useful to look at flow

structures which can be visualized by isosurfaces of the Q-criterion. According to

Hunt et al. (1988), Q relates the strain rate and rotation rate with positive Q values

denoting higher rotation rate than strain rate and thus identifying a vortex core. Q is

defined as the second invariant of the velocity gradient tensor and can be computed

according to

Q =
1

2
(WijWij − SijSij), Sij =

1

2
(
∂ui

∂xj

+
∂uj

∂xi

), Wij =
1

2
(
∂ui

∂xj

− ∂uj

∂xi

). (6.10)

6.4.2 Fundamental Resonance Mechanism

The wave packet simulations (see section 6.3) provided evidence of possible fundamen-

tal resonance between two-dimensional and three-dimensional waves. Fundamental

(K or Klebanoff type) breakdown, first shown experimentally for incompressible flows

by Klebanoff et al. (1962), is a secondary instability mechanism governed by a two-

dimensional primary wave (mode (1,0)) which interacts nonlinearly with a symmetric

pair of oblique waves at the same frequency (modes (1,±1)). A wave number diagram
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Figure 6.31: Wave number diagram for fundamental resonance. Frequency harmonic,
h, on the abscissa and azimuthal mode number, k, on the ordinate. Closed symbols
represent the primary disturbance and open symbols the secondary disturbance.

for this mechanism is presented in figure 6.31. Fundamental resonance can be studied

in a numerical simulation or experiment by seeding both the primary and secondary

disturbance waves (modes (1,0) at a amplitude, and (1,1) at a low amplitude). Non-

linear interaction causes the oblique secondary waves to rapidly amplify. The large

amplitude two-dimensional primary wave becomes modulated in the spanwise direc-

tion as the oblique disturbances reach large amplitudes. This modulation leads to

the formation of so-called Λ-vortices which appear in an aligned pattern due to the

common frequency of the two and three-dimensional disturbances. The tips of the Λ

structures begin lifting from the surface while the legs go towards the wall and hairpin

structures appear on the tip of the Λ vortices. Eventually, the structures break down

to smaller scales as the flow reaches a fully turbulent state.

6.4.3 Parameter Study

The strength of fundamental resonance will depend strongly on the wave angle of

the secondary disturbance wave. The cone geometry complicates this issue because

for a constant azimuthal mode number the wave angle changes in the downstream

direction. In the context of the numerical simulations, only a specific azimuthal
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mode number can be forced. Thus, a parameter study was performed to determine

the azimuthal mode number with the strongest resonant growth. The primary, two-

dimensional disturbance wave, was chosen based on the linear behavior discussed in

section 6.2. The parameter study consisted of a series of low-resolution simulations

in which different azimuthal-modes (10 < kc < 60) were forced at a low amplitude in

addition to a two-dimensional primary disturbance at a moderate amplitude.

A summary of the results of these simulations is presented in figure 6.32. The

streamwise evolution of the amplitude of mode (1,1) for different azimuthal mode

numbers is shown as well as the linear behavior which was extracted from simulations

only forcing mode (1,1) at a low amplitude. Several of these modes depart from

their linear behavior and experience resonant growth. Waves with moderately high

azimuthal mode numbers (40 < kc < 52) experience the strongest resonant growth.

The effect of the amplitude of the primary disturbance, mode (1,0), was also studied.

Figure 6.32 presents the amplitude development of mode (1,1) (kc = 50) for several

different primary wave amplitudes. As expected within the context of secondary

instability theory, the onset and strength of the fundamental resonance is entirely

dependant on the amplitude of the primary wave. With increasing primary wave

amplitude, the resonance location moves upstream. From this information, it is also

possible to explain the broad side bands appearing in the wave packet spectra (see

section 6.3) near the most dominant axisymmetric frequency. Although higher k′cs

have stronger resonant growth, due to the initial linear behavior they have much

lower amplitudes at the resonance location than less oblique waves. Thus, in the wave

packet the initial oblique component of the spectrum appears at relatively low wave

numbers and higher azimuthal modes begin appearing somewhat further downstream.

Figure 6.33 contains a comparison of the secondary growth rate (−σi) after res-

onance of mode (1,1) at Rx = 2225. At this position it is clear that the strongest

resonant growth is for kc = 46. It is also useful to look at contours of −σi in theKc−Rx

plane (figure 6.33) to understand the growth at different downstream locations. From
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Figure 6.32: a) Downstream development of ρ′max amplitudes illustrates departure
from linear behavior and the onset of fundamental resonance with the strongest
growth for azimuthal modes 40 < kc < 52. b)Comparison of amplitude development
of mode (1,1) for kc = 50 with different primary wave (1,0) amplitudes shows that
as the amplitude of primary wave is increased the resonance point moves upstream.
Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.33: a) The growth rate of mode (1,1), −σi, after resonance (Rx = 2225)
shows the strongest resonant growth is for kc < 46. b) Contours of the secondary
growth rate in the Kc − Rx plane show strong resonant growth for 40 < kc < 50
beginning near Rx = 2180. Sharp cone, M = 7.95, T = 53.35K.
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this plot, it is also apparent that the strongest resonance is for 40 < Kc < 50 and

that the resonance begins near Rx ≈ 2180.

6.4.4 Breakdown Simulations: Fundamental Breakdown

Based on the results of the parameter study, a series of simulations with increased reso-

lution were performed forcing both an axisymmetric mode (1,0) with non-dimensional

frequency F = 9.1 × 10−5 as well as a symmetric pair of oblique waves at the same

frequency (modes (1,±1)) with azimuthal mode number kc = 46. A summary of the

simulations is presented in table 6.3.

Name Nx Ny Nz (modes) Grid size Domain length in x [m] A1,0 A1,1

FB1 2000 300 16 19.8e6 0.5 < x∗ < 1.433 4e−2 1e−3
FB2 2000 300 33 39e6 0.5 < x∗ < 1.433 4e−2 1e−3
FB3 2000 300 33 39e6 0.5 < x∗ < 1.433 4e−2 1e−2
FB4 3500 300 82 171.15e6 0.55 < x∗ < 1.47 5e−2 5e−2
FB5 2400 300 55 39.6e6 1.04 < x∗ < 1.52 n/a n/a
FB6 3000 300 82 73.8e6 1.04 < x∗ < 1.53 n/a n/a

Table 6.3: Summary of parameters used in the spatial simulations. Sharp cone,
M = 7.95, T = 53.35K.

The downstream development of the u-velocity disturbance amplitudes for simu-

lation FB1 is shown in figure 6.34. The onset of fundamental resonance is apparent.

Modes (1,1) and (0,1) grow nonlinearly and eventually overtake the primary distur-

bance wave (1,0). There is also a generation of higher harmonics, modes (2,0) and

(2,1), which was observed in the experiments by Stetson & Kimmel (1992b). When

modes (0,1) and (1,0) approach the amplitude of the primary disturbance, mode (1,0),

all higher modes rapidly grow as the transition process becomes strongly nonlinear.

Flow structures identified by isosurfaces of Q=200 (figure 6.35) show the character-

istic aligned Λ-structures developing and the formation of hairpin vortices near the

end of the domain. The structures show that the flow remains extremely coherent.
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The average skin friction coefficient (figure 6.34) shows an initially strong increase

just before x∗ = 0.8m. However, the skin friction surprisingly decreases sharply to al-

most the laminar value before slightly rising again near the end of the computational

domain. In order to rule out a lack of adequate azimuthal resolution, simulation

FB2 was performed with 33 modes. Figure 6.36 shows identical behavior of the skin

friction and amplitude development when compared to simulation FB1. Thus, it can

be concluded that the spanwise resolution in simulation FB1 was adequate.

Careful examination of the streamwise evolution of the skin friction and distur-

bance amplitudes revealed that the peak in the skin friction corresponds to the stream-

wise location where mode (1,0) saturates and starts decreasing in amplitude. The skin

friction rises again only after many higher modes reach amplitudes within one to two

orders of magnitude of the strongest disturbances. Due to the initial decay of mode

(1,1) the amplitude at the resonance point is nearly two orders of magnitude lower

than the initial forcing and therefore it only exceeds the amplitude of the primary

disturbance near the end of the computational domain. To further confirm the de-

pendence of the initial rise in the skin friction solely on mode (1,0), a simulation

only allowing one higher azimuthal mode was performed. The development of the

amplitudes and skin friction are presented in figure 6.37. As predicted, the skin fric-

tion initially rises identically to simulations FB1 and FB2. Thus, simulation FB3

was performed with the initial amplitude of the secondary disturbance (mode (1,1))

increased to 10−2.

Figure 6.38 shows the development of u-velocity disturbance amplitudes for sim-

ulation FB3. In comparison to FB2, mode (1,1) reaches a large amplitude further

upstream (due to the increased initial amplitude) which causes stronger nonlinear

interactions and growth of higher modes. The average skin-friction coefficient (see

figure 6.38) still includes the initial rise associated with the large amplitude 2D distur-

bances, and a subsequent fall associated with its saturation. However, the fall is not

as drastic and the skin friction coefficient again rises rapidly at x∗ ≈ 1.25m as higher
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modes experience strong amplification and reach large amplitudes. The saturation

and decrease in amplitude of the 2D modes is likely due to energy being transferred

to three-dimensional modes.

The flow visualizations (figure 6.39) reveal remarkable similarities to fundamental
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Figure 6.34: a) Streamwise development of u-velocity disturbance amplitudes for
simulation FB1 show the onset of transition via fundamental resonance. Modes
(0,1) and (1,1) grow nonlinearly and overtake the primary wave (1,0). b) Time and
azimuthal averaged skin friction coefficient, cf , first rises in response to the large
amplitude 2-D disturbance. However it then falls again due to saturation of mode
(1,0). Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.35: Flow structures identified by isosurfaces of Q=200 for simulation FB1.
Λ-vortices develop and hairpin vortices begin forming at the tip of the Λ structures
near the end of the domain. Sharp cone, M = 7.95, T = 53.35K.

breakdown in incompressible flows (c.f. Kachanov (1994)). The 2-D disturbance

becomes modulated in the azimuthal direction as oblique waves experience nonlinear

amplification. This modulation eventually forms the characteristic aligned Λ-vortex

pattern with the tips lifting from the cone surface. The contours of azimuthal vorticity

in the symmetry plane (figure 6.39) show the shear layer “rolling up” as the flow

breaks up into smaller scales and becomes less coherent. One key feature of this

transition process is the vast extent in the downstream direction over which it takes

place (relative to the incompressible case). The formation and eventual breakup of

the Λ-structures occurs over quite a large number of fundamental wave lengths.

In an attempt to completely eliminate the dip in skin friction, as well as to reach

a fully turbulent state by the end of the computational domain, simulation FB4 was

performed with increased forcing amplitudes of both the primary and secondary dis-

turbances. Both modes (1,0) and (1,1) were forced with A1,0 = A1,1 = 5∗10−2 and the

extent of the downstream domain was increased slightly (see table 6.3). Results from

simulation FB4 showed particularly interesting behavior. Downstream development

of the u-velocity disturbance amplitudes and skin friction coefficient are presented

in figure 6.40. It appears that the high amplitude forcing mode (1,1) generates a

high amplitude mode (0,2) which becomes the most dominant disturbance for this

simulation. This alters the development of the disturbances and also produces mode
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Figure 6.36: a) Streamwise development of u-velocity disturbance amplitudes for
simulation FB2 b) Time and azimuthal averaged skin friction coefficient, cf , shows
identical behavior to the lower resolution simulation FB1. Sharp cone, M = 7.95,
T = 53.35K.
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Figure 6.37: a) Streamwise development of u-velocity disturbance amplitudes for
fundamental resonance only allowing only one higher azimuthal mode. b) Average
skin friction coefficient for fundamental resonance simulation allowing only one higher
spanwise mode. The initial rise is only governed by the primary, 2D disturbance wave.
Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.38: a) The streamwise development of u-velocity disturbance amplitudes for
simulation FB3. Increased initial amplitude of the secondary wave causes it to over-
take the primary wave further upstream compared to simulation FB2. b) Averaged
skin friction coefficient, cf , for simulation FB3. A1,0 = 4 ∗ 10−2, A1,1 = 10−2. Sharp
cone, M = 7.95, T = 53.35K.
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Figure 6.39: a) (top) Instantaneous flow visualization with isosurfaces of the Q-
vortex identification criterion (Q=300) and countours of azimuthal vorticity in the
symmetry plane. Λ-structures develop and begin breaking up into small scales as the
flow transitions. (bottom) Top view of the flow visualized with isosurfaces of Q=300
clearly showing the development of Λ-structures. b) Contours of azimuthal vorticity
in the symmetry plane show the shear layer “rolling up.” Sharp cone, M = 7.95,
T = 53.35K.
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Figure 6.40: a) Streamwise development of u-velocity disturbance amplitudes for
simulation FB4. A1,0 = A1,1 = 5 ∗ 10−2. b) Averaged skin friction coefficient for
simulation FB4 demonstrates that the increased amplitude forcing has delayed the
transition process in simulation FB4. Sharp cone, M = 7.95, T = 53.35K.
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(1,3). Since modes (0,2) and (1,3) are the signature modes of oblique breakdown, it

seems that forcing mode (1,1) at such a large amplitude triggers an oblique beakdown

mechanism which competes with the fundamental breakdown. The net result is that

the entire transition process is delayed. The bulk of higher modes, which reached

large amplitude at x∗ ≈ 1.2m in simulation FB3, only begin their rapid nonlinear

growth near the end of the domain at x∗ ≈ 1.4m. Therefore, the flow is farther from

turbulence in simulation FB4 compared to previous simulations (as is clear from the

average skin friction in figure 6.40).

6.4.5 Time Dependent Inflow Continuation

With the goal of progressing deeper into the transitional regime, simulations FB5 and

FB6 were performed based on the results of simulation FB3. In these simulations,

rather than forcing disturbances through wall blowing and suction, disturbances are

forced directly at the inflow boundary using the results of simulation FB3. The wall-

normal amplitude and phase distributions of all flow quantities were extracted at

x∗ = 1.044m from simulation FB3 for modes (0,1), (0,2), (1,0), (1,1), (1,2), (2,0),

(2,1) and (2,2). At the inflow, these unsteady disturbances are then superposed with

the steady baseflow boundary condition. Equation 6.11 governs the inflow boundary

condition for each disturbance wave used for these simulations. A(y) and θ(y) repre-

sent the amplitude and phase distributions for each disturbance quantity extracted

from simulatin FB3. φ is a placeholder for any primitive variable (u, v, T, ρ, P or w).

Figure 6.41 contains a schematic of the setup for these continuation simulations using

time dependent inflow forcing.

φ(y)inflow = A(y)sin(ωt+ θ(y))cos(kcϕ) (6.11)

Clearly, at x∗ = 1.044m in simulation FB3 there are many other large ampli-

tude disturbances. However, due to computational expense the entire disturbance
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Figure 6.41: Schematic of continuation strategy using time dependent inflow bound-
ary condition (simulations FB5 and FB6 ).

field cannot be forced at the inflow. The relevent modes were chosen by their distur-

bance amplitudes at this streamwise location. This clearly represents an assumption

regarding the initial condition for simulations FB5 and FB6. The development of

u-velocity disturbance amplitudes for simulation FB5 are presented in figure 6.42.

All higher modes are immediately generated and begin to grow rapidly. The aver-

age skin friction (figure 6.42) demonstrates similar behavior to simulation FB3. Note

that the skin friction for simulation FB3 drops dramatically due to the buffer domain

applied at the outflow. However, there are discrepancies between the skin friction for

simulations FB3 and FB5 due to the fact that only a small number of disturbances

were introduced at the inflow and not the complete disturbance field. The skin fric-

tion rises more rapidly and approaches more closely the turbulent values suggested

by White (1991). Since only eight disturbance waves were forced based on the dis-

turbance environment from simulation FB3, the other disturbances are “naturally”

generated based on the nonlinear interactions in the governing equations. This al-

lows for enhanced nonlinear interactions slightly further upstream when compared to

simulation FB3.

To confirm the results of simulation FB5 and to determine if the behavior in the

skin friction after x∗ ≈ 1.4m is due to a lack of adequate resolution, simulation FB6
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was performed with increased x-resolution and an increased number of azimuthal

modes (see table 6.3). The skin friction, plotted in figure 6.43, initially develops

almost identically for both cases. However, in the late stages some discrepancy is

present. The differences, as well as the lack of smoothness or apparent convergence of

the skin friction may be due to the fact that the flow is losing periodicity and Fourier

transforms over a single period fo the fundamental disturbance wave were used for

the averaging.

a)

b)

0.8 1 1.2 1.4
x* [m]

5e-04

1e-03

2e-03

2e-03

3e-03

3e-03

C
f

Laminar
DNS FB3
Turbulent (White)
DNS FB5

Figure 6.42: a) Streamwise development of u-velocity disturbance amplitudes for
simulation FB5. Time dependent inflow forcing based on the results of simulation
FB3. b) Average skin friction coefficient for simulation FB5. Sharp cone, M = 7.95,
T = 53.35K.
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Flow structures from simulation FB6 are visualized in figure 6.44 by isosurfaces of

Q=500 colored with streamwise vorticity and contours of azimuthal vorticity in the

symmetry plane. Once again, the extremely long extent of the transitional region is

evident. The development of Λ-vortices, hairpin-vortices and the eventual breakup of

the coherent structures occurs extraordinarily slowly in comparison to incompressible

flow. Figure 6.45 shows isosurfaces of Q=1500 (again colored with streamwise vortic-

ity) and azimuthal vorticity in the symmetry plane near the end of the computational

domain. From the azimuthal vorticity contours, it is clear that the flow remains quite

coherent and there are large wave structures near the boundary layer edge. However,

within the boundary layer the flow is becoming more random.
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Figure 6.43: Time and azimuthal averaged skin friction coefficient. Open symbols are
simulation FB5 and solid line is simulation FB6. Sharp cone, M = 7.95, T = 53.35K.
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Figure 6.44: Isosurfaces of Q=500 colored with streamwise vorticity and contours of
azimuthal vorticity in the symmetry plane. Results for simulation FB6 with time
dependent inflow forcing. Sharp cone, M = 7.95, T = 53.35K.

Figure 6.45: Isosurfaces of Q=1500 colored with streamwise vorticity and contours
of azimuthal vorticity in the symmetry plane near the end of the computational
domain. Results for simulation FB6 with time dependent inflow forcing. Sharp cone,
M = 7.95, T = 53.35K.
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6.4.6 Comparison with Oblique Breakdown

Oblique breakdown is not a secondary instability mechanism in the classical sense.

Rather than a primary disturbance causing nonlinear growth of a lower amplitude

secondary disturbance, oblique breakdown is initiated only by a symmetric pair of

oblique disturbance waves - modes (1,±1). A wave number diagram for this break-

down mechanism is presented in figure 6.46. The pair of oblique disturbances grow

and eventually reach amplitudes large enough to cause nonlinear amplification of

many higher modes. The signature modes generated in oblique breakdown are modes

(0,2) and (1,3), as well as combinations of (even, even) and (odd, odd). As mentioned

previously in section 1.2, the oblique breakdown mechanism was first discovered for

supersonic flows by Thumm (1991) in DNS of flat plate boundary layer transition

at M=1.6. Although for M >∼ 4 two-dimensional disturbances are most amplified

linearly, slightly oblique waves experience similar linear growth and Husmeier (2008)

demonstrated that oblique breakdown of shallow angle waves may also be relevant

for hypersonic Mach numbers.

Figure 6.46: Wave number diagram for oblique breakdown which is initiated by a
symmetric pair of oblique disturbance waves.

In order to compare with the previously discussed simulations of fundamental

breakdown, a simulation of oblique breakdown was performed for the same flow con-

ditions and computational domain as simulation FB3. The resolution for this simu-

lation was 2000 × 300 × 55 modes. The parameters were chosen for this simulation
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based on a study conducted using temporal DNS for the same flow conditions (see

chapter 7). The symmetric pair of oblique disturbances are forced with an amplitude

A1,1 = 2∗10−2 and kc = 20 at a frequency ωr = 440.3. The development of u-velocity

disturbances and average skin friction coefficient are shown in figure 6.47. Mode (1,1)

grows and begins to saturate at x∗ ≈ 1.1m. Near this streamwise location there is a

small initial rise and then dip in the skin friction coefficient, similar to the initial rise

and fall in the skin friction coefficient which accompanies the large amplitude mode

(1,0) in that case. However, the rise is much smaller for the oblique breakdown due

to the lower amplitude of mode (1,1) because it is not as strongly amplified as two-

dimensional disturbances. After mode (1,1) saturates, modes (0,2), (0,4) and (1,3)

surpass the amplitude of mode (1,1) and the flow begins to transition at x∗ ≈ 1.2m

with the accompanying rise in the skin friction. Flow structures from oblique break-

down are shown in figure 6.48 by isosurfaces of Q=400. The oblique disturbance

waves form “rope like” streamwise structures before breaking up into two wedges of

smaller scale motion.

In comparison to fundamental breakdown, the onset of transition and the rise

in skin friction is much less dramatic and it seems for the investigated setup that

fundamental breakdown is a stronger mechanism. However, it is extremely difficult

to compare transition onset between these two mechanisms because they are of a

completely different nature. The true onset of transition for fundamental breakdown

could be considered to occur after the first rise in skin friction because this initial

distortion of the mean flow is caused entirely by the axisymmetric primary disturbance

wave. With this consideration, the true onset of transition occurs at roughly the same

streamwise location (x∗ ≈ 1.2m) for both forcing mechanisms. At this point, the slope

of the skin friction is much larger for the fundamental breakdown. However, it must

be stressed that these results show behavior for the given forcing parameters and

these two mechanisms are of a completely different nature. Therefore, it is difficult

to compare them directly.
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Figure 6.47: a) Streamwise development of u-velocity disturbance amplitudes for
oblique breakdown. kc = 20, ωr = 440.3, A1,1 = 2 ∗ 10−2. b) Average skin friction
for oblique breakdown and fundamental breakdown (simulation FB3 ). Sharp cone,
M = 7.95, T = 53.35K.
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Figure 6.48: Isosurfaces of Q=400 for oblique breakdown. The oblique disturbance
waves form rope like regions and eventually break up into two wedges of smaller scale
structures. Sharp cone, M = 7.95, T = 53.35K.

6.4.7 Preliminary Summary of Controlled Transition Simulations

A series of highly resolved simulations of controlled transition were performed. These

simulations utilized as many as 171 million grid points and have pushed the limits

of today’s most powerful supercomputers, requiring up to three weeks of continu-

ous calculation on 1024 processors. Based on the results of wave packet simulations

(see section 6.3), the main transition mechanism studied was fundamental (K-type)

breakdown. In these simulations, a primary, axisymmetric disturbance wave (mode

1,0) was forced as well as oblique secondary disturbance waves (mode 1,±1). The

frequency of these disturbances was chosen based on their linear behavior. In order

to choose the optimal azimuthal mode number (kc) for the oblique disturbances, a

parameter study was performed and the mode with the strongest resonant growth was

found to be kc = 46. The simulations showed that the development of fundamental

breakdown in the hypersonic boundary layer generally follows the same path as for

incompressible flow. The large amplitude axisymmetric primary disturbance becomes

modulated in the azimuthal direction due to resonant growth of oblique modes. This

causes aligned Λ vortices accompanied hairpin vortices that form at the inclined tip
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of the Λ structure. These coherent structures eventually breakup into smaller length

scales. The key difference between the flow structures observed in the current simula-

tions when compared to incompressible flow is the extremely long streamwise extent

over which the transition process takes place. In contrast to incompressible flow, the

nonlinear transition region appears to be as long or longer than the region of linear

development. Average skin friction coeffcient curves for fundamental breakdown show

an initial rise governed by the large amplitude of the primary disturbance followed by

a dip caused by nonlinear saturation of the primary disturbance.. A second, steeper

rise in skin friction occurs when all higher modes experience rapid nonlinear ampli-

fication. Unfortunately, due to the enormous computational effort required for these

simulations, a fully turbulent state (based on theoretical skin friction estimates) was

not reached for this breakdown scenario.

Finally, a simulation of oblique breakdown was performed for comparison with fun-

damental breakdown. Flow structures in oblique breakdown resemble those shown

in previous studies (such as Mayer et al. (2009b)) at lower Mach numbers. For the

investigated forcing scenarios, the onset of transition for oblique breakdown is less dra-

matic than for fundamental breakdown. Given the same computational domain and

similar initial forcing amplitudes, the fundamental breakdown appears to progress

farther into transition. However, it is extremely difficult to compare these mecha-

nisms due to their entirely different natures. It should also be noted that although

the initial forcing amplitude of mode (1,1) for oblique breakdown is comparable to the

primary disturbance wave forced in the fundamental breakdown the ensuing distur-

bance development is different. Due to the receptivity process after the forcing from

the disturbance slot, at the location where mode (1,1) begins to grow it is approxi-

mately one order of magnitude lower than mode (1,0) in the fundamental breakdown

simulations. Thus, it is difficult to draw any concrete conclusions regarding the rela-

tive dominance of one transition mechanism over the other and it suffices to say that

both are likely to be relevent for hypersonic boundary layers.



202

6.5 Summary of Mach 8 Spatial Simulations

The linear and nonlinear development of disturbances in a hypersonic boundary layer

on a sharp cone were studied using spatial direct numerical simulations. Specific

attention was paid to the nonlinear regime of transition. The main goals of this

research were twofold:

1) Assess which nonlinear mechanism(s) may be relevent in a broad spectrum

disturbance environment for the current flow conditions, and 2) perform controlled

transition simulations of these mechanism(s).

As an initial step, axisymmetric pulse disturbances were introduced into the flow to

generate a broad frequency spectrum of two-dimensional disturbances for comparison

with LST data and to aid in the selection of disturbance frequencies for controlled

transition simulations. These simulations revealed an unexpected, rapid nonlinear

growth of low-frequency waves. Further examination showed that this growth is likely

caused by resonance triads consisting of two relatively high frequency waves (within

the band of most unstable second mode axisymmetric waves) and a third wave with a

frequency equal to the difference in frequencies between the other two modes. Three

dimensional simulations allowing only a single higher azimuthal mode showed that

these low-frequencies resonances could heavily influence low-frequency oblique waves

as well.

The next step in accomplishing the first research goal was to perform three-

dimensional wave packet simulations featuring a broad spectrum of frequencies and

wave numbers. Simulations of a wave packet forced with a moderately high am-

plitude (Ain = 10−2) showed strong evidence of nonlinear interactions by the end of

the computational domain. The most dominant nonlinear interaction within the wave

packet appeared to be between axisymmetric and oblique waves of the same frequency.

This pointed to the possible relevance of fundamental breakdown for the investigated

flow. Notably, disturbance spectra from the wave packet simulations revealed no
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evidence of subharmonic resonance which had been suggested as the dominant mech-

anism in Mach 6 experiments performed by Shiplyuk et al. (2003) and Bountin et al.

(2008). Additionally, these simulations further confirmed the existence of the nonlin-

ear growth of low-frequency modes which was observed in the two-dimensional and

single higher mode simulations.

For goal number 2, a detailed study of fundamental resonance was performed using

controlled disturbance inputs. A parameter study revealed strong resonant growth

for several different azimuthal modes in the presence of an axisymmetric primary

disturbance wave. The mode showing the largest growth rate after resonance (kc =

46) was chosen for several highly resolved simulations of fundamental breakdown.

Flow structures from these simulations revealed remarkable similarity to fundamental

breakdown in incompressible flows and are dominated by the formation of aligned Λ

vortices which begin stretching and breaking up into smaller scales. There is, however,

one crucial difference between the presented simulations and fundamental breakdown

in incompressible flows. For the hypersonic boundary layer, the streamwise extent

over which the nonlinear regime of transition occurs is extraordinarily long. For these

simulations the skin friction initially rises in response to the large amplitude primary

disturbance wave and then features a dip before again rising sharply as nonlinear

interactions cause many higher modes to rapidly reach large amplitudes. However,

due to the enormous computational expense, the theoretical value for turbulent skin

friction was approached, but not fully reached.

An additional continuous disturbance forcing simulation of the oblique break-

down mechanism was also performed for comparison with fundamental breakdown.

The oblique breakdown mechanism also initiated transition for the investigated flow

conditions and forcing parameters. However, the onset of transition was not as dra-

matic and the skin friction did not reach a level nearly as high as for the fundamental

breakdown. It must be made clear that comparing these two mechanisms is quite

difficult due to their completely different nature. Although the investigated oblique
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breakdown did not progress as far into the transitional regime, it seems clear that

both mechanisms are relevent for hypersonic boundary layers.
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7. Transition in a Mach 8 Boundary Layer on a Sharp

Cone: Temporal Direct Numerical Simulations

7.1 Computational Domain and Coordinate System
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Figure 7.1: Computational domain used for Temporal Direct Numerical Simulations.

Figure 7.1 shows the computational domain used for Temporal Direct Numerical

Simulations. The extent of the computational domain is determined by the distur-

bance wave lengths in streamwise and azimuthal direction, λx and λϕ. Note that

the symmetry in azimuthal direction allows for a diminution of the computational

domain to half the azimuthal wave length in order to reduce the computational ef-

fort. In wall-normal direction, the computational domain extends from the wall to a

height of about nine times the boundary layer thickness. The oblique shock, which

is emanating from the cone tip, is not included in the computational domain. The

influence of the domain height on the computed results is investigated in section 7.2.2.

Due to the small extent of the computational domain in streamwise and azimuthal

direction, a cylindrical coordinate system is applied. x indicates the streamwise di-

rection parallel to the cone surface, r refers to the wall-normal direction orthogonal
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to the cone surface and ϕ denotes the azimuthal direction.

7.2 Code Validation

The numerical method used for the investigation of the present hypersonic conical

boundary layer flow is subjected to several tests in order to prove its correct func-

tionality. Since a validation has to be performed with established scientific data,

compressible linear stability theory (Mack, 1984) was chosen to evaluate the results

of the temporal code. In particular, the validation is carried out by comparing the re-

sults of the temporal direct numerical simulations with results obtained from Mack’s

compressible linear stability solver for both, two- and three-dimensional disturbance

waves. In the following, the temporal direct numerical simulations are performed

considering the second viscosity coefficient λ = 0.8. This is necessary, because the

second viscosity is implemented in Mack’s linear stability solver. However, according

to the majority of publications, the second viscosity coefficient is assumed to be zero

in the remaining chapters of this thesis and only taken into account for validation

purposes.

7.2.1 Comparison of Base Flow Profiles

Figure 7.2 shows three different sets of base flow profiles. Each set of base flow

profiles consists of a streamwise velocity profile U , a temperature profile T and a

density profile ρ plotted versus the the wall-normal coordinate r. Solid lines indicate

the velocity, temperature and density distribution of the base flow computed with the

second-order TVD (Total Variation Diminishing) finite volume code written by Gross

& Fasel (2002). Symbols denote the base flow profile computed with the high-order

accurate finite differences code and dashed lines label the similarity base flow profile.

All profiles are taken at the same downstream position Rx = 2024.17. As can be seen

from Figure 7.2, the similarity profiles and the profiles computed with the high-order
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Figure 7.2: Comparison of base flow profiles at downstream location Rx = 2024.17.
For visualization purposes T is scaled by a factor of 0.2. Me = 6.76, T ∗

e = 71.75K,
Ree = 4, 796, 970.

accurate finite differences code show an excellent agreement for all three quantities.

The base flow profile computed with the finite volume code, however, slightly deviates

from the latter two profiles. This base flow profile serves as an initial condition for

the spatial high-order accurate finite differences code, which converges this initial

base flow towards the similarity profile. The latter procedure results in an excellent

match of the similarity base flow profile and the base flow profile obtained from the

high-order accurate finite differences code. Thus, the base flow profile computed with

the spatial high-order accurate finite differences code is used as an initial condition

for all simulations in this thesis, except for the following validation, which is carried

out with the similarity base flow profile.

7.2.2 Code Validation with LST for Two-Dimensional Disturbances

At first, the code is validated with results from linear stability theory for two-

dimensional disturbances. In order to compare the results of the temporal direct
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Figure 7.3: Hypersonic flow over a sharp cone. Taken from Anderson (2004).

free-stream boundary layer edge
Re 3, 333, 333 4, 796, 970
M 7.95 6.76
T 53.35K 71.75K

Table 7.1: Flow parameters used in Temporal Direct Numerical Simulations. M∞ =
7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.

numerical simulations with the results obtained from linear stability theory the bound-

ary layer edge values have to be determined. Note that the conical flow field differs

from the flow field of a flat plate or a cylinder. According to Anderson (2004), all

flow properties of an inviscid flow field of a sharp cone between the cone surface and

the oblique shock are constant along rays from the cone tip and the flow properties

vary only from one ray to the next. This is illustrated in Figure 7.2.2. In contrast

to that, flat plate and cylinder have a uniform flow field far away from the surface.

Hence, in this thesis the boundary layer edge of the present conical flow is defined

as the position, where the wall-normal gradient of the streamwise velocity δU
δr

has a

local minimum (Laible et al., 2008). The flow properties at this location are indicated

with the subscript e and are summarized in Table 7.1. For comparison, Table 7.1 also

contains the free stream values of the investigated flow.
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Figure 7.4: Comparison of wall-normal amplitude distributions for disturbance ve-
locity in streamwise direction u′ (left), disturbance velocity in wall-normal direction
v′ (center) and disturbance temperature T ′ (right) obtained from TDNS to Mangler-
transformed amplitude distributions obtained from TLST. A(1,0) = 10−7, kc = 0,
αr = 457.9, Rx = 2024.17, Me = 6.76, T ∗

e = 71.75K, Ree = 4, 796, 970.

Mack’s linear stability solver is only applicable to a flat plate geometry. Therefore,

the temporal direct numerical simulations have to be carried out with a very high

local cone radius r1 in order to ensure that azimuthal curvature effects do not play a

role. For the present validation, the local cone radius r1 is therefore multiplied by a

factor 1000. In addition to that, the results of both methods are only compareable

after applying the Mangler-transformation (Mangler, 1948), where the wall-normal

similarity variables of flat plate and cone are related by ηplate =
√

3 ·ηcone. Note that r

is linked with η by η = r ·
√
Ree/x, where x is the downstream position. Furthermore,

the linear stability solver requires a similarity base flow profile as an initial condition.

Hence, the same similarity base flow profile is used as an initial condition for the

temporal code.

In this chapter, the disturbances are two dimensional, i. e. the azimuthal mode

number is kc = 0. The two-dimensional wave (1, 0) is forced with the amplitude

A(1,0) = 10−7. The low amplitude assures a linear disturbance development and

therefore allows for a detailed comparison with linear stability theory.

Figure 7.4 shows the wall-normal amplitude distributions of the streamwise dis-

turbance velocity u′, the wall-normal disturbance velocity v′ and the disturbance
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Figure 7.5: Comparison of wall-normal phase distributions for disturbance velocity in
streamwise direction u′ (left), disturbance velocity in wall-normal direction v′ (center)
and disturbance temperature T ′ (right) obtained from TDNS to Mangler-transformed
phase distributions obtained from TLST. A(1,0) = 10−7, kc = 0, αr = 457.9, Rx =
2024.17, Me = 6.76, T ∗

e = 71.75K, Ree = 4, 796, 970.

temperature T ′, respectively, obtained from temporal DNS and temporal LST for

a streamwise wave number αr = 457.9. The amplitude profiles of the quantities

show a very good agreement. The double-peaked structure of the eigenfunctions is

characteristic for high-speed flows.

The wall-normal phase distributions of the disturbance velocity in streamwise di-

rection u′, the disturbance velocity in wall-normal direction v′ and the disturbance

temperature T ′ obtained from both, temporal direct numerical simulations and linear

stability theory are plotted in Figure 7.5. All three graphs show an excellent agree-

ment. Furthermore, the frequency ωr is plotted against the streamwise wave number

αr in Figure 7.6. It can be observed that the results of DNS and LST are in perfect

agreement

As can be seen from Figure 7.7, where the temporal growth rate ωi is given as a

function of the streamwise wave number αr, the agreement between temporal DNS

and LST is also good for this quantity. Since the base flow is parallel, different

criteria do not influence the growth rate. Therefore, the growth rates calculated

with the density disturbance ρ′, temperature disturbance T ′ or disturbance velocity
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obtained from TDNS to frequency ob-
tained form TLST. A(1,0) = 10−7, kc = 0,
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Figure 7.7: Comparison of temporal
growth rate ωi obtained from TDNS
to temporal growth rate obtained form
TLST. A(1,0) = 10−7, kc = 0, Rx =
2024.17, Me = 6.76, T ∗

e = 71.75K, Ree =
4, 796, 970.

v′ according to

ωi =
∂

∂t

(
ln
A

A0

)
(7.1)

are the same as the growth rate calculated with the disturbance velocity in streamwise

direction u′, which is presented in Figure 7.7. According to Malik & Spall (1991),

transverse curvature has a stabilizing influence on second mode disturbances. Hence,

the growth rates presented in the following chapters are lower than those for the

present simulations, where a thousand times larger local cone radius r1 is enforced.

Moreover, the influence of the domain height is investigated. In Figure 7.8, the

maximum temporal growth rate ωi,max is plotted against the ratio of wall-normal

coordinate r and boundary layer thickness δ99.9, where the maximum temporal growth

rate ωi,max is defined as the growth rate corresponding to the streamwise wave number

αr = 457.9 and the boundary layer thickness δ99.9 is specified as the location where

U = 0.999 · U∞. It can be observed that the maximum temporal growth rate is

constant and thus not influenced by the decrease of the domain height until a value of

approximately twice the boundary layer thickness. In the present work, all simulations
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Figure 7.8: Influence of domain height on
maximum temporal growth rate ωi,max.
A(1,0) = 10−7, kc = 0, αr = 457.9, Rx =
2024.17, Me = 6.76, T ∗

e = 71.75K, Ree =
4, 796, 970.
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Figure 7.9: Influence of wall-normal grid
resolution on temporal growth rate ωi.
A(1,0) = 10−7, kc = 0, Rx = 2024.17,
Me = 6.76, T ∗

e = 71.75K, Ree =
4, 796, 970.

are carried out for a domain height of about nine times the boundary layer thickness

in order to exclude the influence of an insufficient domain height.

Furthermore, the grid resolution in wall-normal direction is investigated. Figure 7.9

shows the temporal growth rate ωi corresponding to four different grid resolutions.

Reducing the numbers of grid points j from 345 to 173 does not influence the results

of the temporal code. A further reduction to 87 grid points in wall-normal direction,

however, causes an increase of the temporal growth rate. In addition to that, the

influence of grid stretching is investigated. It can be seen from Figure 7.9 that an

equidistant grid distribution in the boundary layer results in the same growth rates.

Thus, the stretching in the previous cases has no negative influence. The four in-

vestigated grids are presented in Figure 7.10. In the following chapters the stretched

grid with 345 points in wall-normal direction is used. Note that the boundary layer

is resolved with 150 grid points.
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Figure 7.10: Comparison of different wall-normal grids used in Temporal Direct Nu-
merical Simulations.

7.2.3 Code Validation with LST for Three-Dimensional Disturbances

Although the most unstable wave for the investigated flow regime is two-dimensional,

the temporal code is also validated for a case of three-dimensional disturbances. The

azimuthal mode number of the three-dimensional wave (1, 1) is kc = 20 and the

forcing amplitude is A(1,1) = 10−7. All other parameters remain as described above.

Figure 7.11 and Figure 7.12 show a comparison of the wall-normal amplitude and

phase distributions, respectively, for the disturbance velocity in streamwise direction

u′, the disturbance velocity in wall-normal direction v′ and the disturbance temper-

ature T ′ obtained from temporal DNS to Mangler-transformed amplitude and phase

distributions obtained from temporal LST for a streamwise wave number αr = 523.6.

It can be seen that the agreement of all three quantities is very good.

In Figure 7.13 the frequency ωr is given as a function of the streamwise wave

number αr. As for the two-dimensional case, the agreement between linear stability

theory and temporal direct numerical simulation is excellent.

The temporal growth rate ωi is plotted against the streamwise wave number αr in

Figure 7.14. Again, it can be observed that the overall agreement between DNS and

LST is good. Note that according to the findings of Mack (1984) two-dimensional



214

0.0 0.2 0.5 0.8 1.0
u’/u’

max

0.000

0.002

0.004

0.006

r

TLST
TDNS

0.0 0.2 0.5 0.8 1.0
v’/v’

max

0.000

0.002

0.004

0.006

r

TLST
TDNS

0.0 0.2 0.5 0.8 1.0
T’/T’

max

0.000

0.002

0.004

0.006

r

TLST
TDNS

Figure 7.11: Comparison of wall-normal amplitude distributions for disturbance ve-
locity in streamwise direction u′ (left), disturbance velocity in wall-normal direction
v′ (center) and disturbance temperature T ′ (right) obtained from TDNS to Mangler-
transformed amplitude distributions obtained from TLST. A(1,1) = 10−7, kc = 20,
αr = 523.6, Rx = 2024.17, Me = 6.76, T ∗

e = 71.75K, Ree = 4, 796, 970.
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Figure 7.12: Comparison of wall-normal phase distributions for disturbance velocity in
streamwise direction u′ (left), disturbance velocity in wall-normal direction v′ (center)
and disturbance temperature T ′ (right) obtained from TDNS to Mangler-transformed
phase distributions obtained from TLST. A(1,1) = 10−7, kc = 20, αr = 523.6, Rx =
2024.17, Me = 6.76, T ∗

e = 71.75K, Ree = 4, 796, 970.

waves are stronger amplified than three-dimensional disturbances. This behavior can

be verified by comparing Figure 7.7 and Figure 7.14.

7.3 Oblique Breakdown

This section is dedicated to the investigation of oblique breakdown. Oblique break-

down is a viable path to transition, if the dominant disturbance waves are three-

dimensional oblique waves. This is the case for supersonic boundary layers with
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M ≤ 4.5. However, previous investigations revealed that oblique breakdown may

also play an important role for hypersonic flows, like the present Mach 7.95 flow over

a sharp circular cone. As a first step, the linear regime is investigated in section 7.3.1.

Hereafter, a parameter study is carried out in section 7.3.2 in order to identify the

most promising cases, characterized by the strongest amplification of signature modes

of oblique breakdown, namely modes (0, 2) and (1, 3). Those cases are then investi-

gated in more detail by means of higher resolved simulations. Finally, section 7.3.4

presents a brief summary of oblique breakdown simulations.

7.3.1 Investigation of the Linear Regime

An investigation of the linear regime is performed to identify the maximum temporal

growth rate ωi,max for waves with different azimuthal mode numbers kc. It is well

known that for hypersonic boundary layers the temporal growth rate ωi decreases

as the obliqueness of the disturbance waves is increased. This is confirmed by Fig-

ure 7.3.1, where the temporal growth rate ωi for eleven different azimuthal mode
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numbers kc = 0, 1, 4, 8, . . . , 40 is plotted as a function of the streamwise wave number

αr. Figure 7.3.1 also shows that the streamwise wave number for which the tempo-

ral growth rate has a maximum is shifting towards higher values as the azimuthal

mode number is increased. In order to determine the maximum value of the temporal

growth rates ωi,max more precisely, cubic splines are fitted through the data points

obtained from temporal simulations. The maximum growth rates are indicated with

the red dashed line.

7.3.2 Parameter Study

In the following, simulations for eleven different azimuthal mode numbers are per-

formed in order to identify the cases, which show a fast onset of transition. The

streamwise wave number αr of each simulation is chosen such that it corresponds to
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the streamwise wave number for which the temporal growth rate has a maximum

as shown in Figure 7.3.1. The temporal development of the maximum disturbance

velocity in streamwise direction |u′|(h,k) for the eleven azimuthal mode numbers kc

is shown in Figure 7.16. The simulations are performed with a resolution of nine

Fourier modes in streamwise and four Fourier modes in azimuthal direction. In wall-

normal direction 345 grid points are used, where the boundary layer is resolved with

150 points. Due to the low resolution the simulations for kc = 1, 4, 8, 12 and 16 are

terminated before the final time step is reached. For higher azimuthal mode num-

bers, however, resolution problems do not occur, since the growth rates of all modes

are lower. Figure 7.16 reveals that the signature modes (0, 2) and (1, 3) exceed the

amplitude of the forced disturbance mode (1, 1) for the cases with an azimuthal mode

number kc = 20, 24, 28 and 32. This behavior indicates that oblique breakdown can

be a viable path to transition for these particular azimuthal mode numbers. As the

azimuthal mode number is increased to higher values (kc ≥ 36), the transition onset

shifts to a later time instance. Thus, these azimuthal mode numbers aren’t investi-

gated further. In the following, the cases with an azimuthal mode number kc = 20

and kc = 32 are analyzed in more detail by increasing the resolution in streamwise

and azimuthal direction. Due to the facts that, first, the simulation for the case with

the azimuthal mode number kc = 1 shows the strongest growth rate and, second, the

result of the previous simulation did not reveal if the modes (0, 2) and (1, 3) exceed

the amplitude of the oblique disturbance mode (1, 1), this case is also investigated in

more detail.

The resolution is increased to thirty three Fourier modes in streamwise and sixteen

Fourier modes in azimuthal direction, which corresponds to total of 705, 870 grid

points. Three simulations are performed with this resolution, namely the cases with

an azimuthal mode number kc = 1, kc = 20 and kc = 32. The previously presented

simulations serve as an initial condition for these higher resolved simulations in order

to reduce the computational effort. The red dashed lines in Figure 7.16 indicate the
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Figure 7.16: Temporal development of the maximum disturbance velocity in stream-
wise direction |u′|(h,k) for different azimuthal mode numbers kc. A(1,1) = 10−4,
Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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time step at which the initial flow field for the continuation run is extracted. The

simulations are continued from t = 1.0 in the kc = 1 case and from t = 1.2 in the

kc = 20 and kc = 32 cases. Figure 4.3 reveals that oblique breakdown is an unlikely

path to transition for an almost two-dimensional disturbance wave with azimuthal

mode number kc = 1. It can be observed that the initially forced disturbance mode

(1, 1) saturates for t > 1.3 at an almost one order of magnitude higher amplitude

level than mode (1, 3). In addition, modes with even-odd and odd-even streamwise

and azimuthal mode numbers combinations do not reach the amplitude level of the

initially generated modes with even-even and odd-odd streamwise and azimuthal

mode number combinations. In contrast, Figure 4.4 (left) demonstrates for the case

with kc = 20 that the dominant modes in the transition process, namely modes (0, 2)

and (1, 3), exceed the amplitude of mode (1, 1) for t ≈ 1.6. The same behavior

can be observed in Figure 4.4 (right) for the simulation with the azimuthal mode

number kc = 32. In this case, however, the transitional region is reached at a later

time instance t ≈ 2.0. Furthermore, both cases show that waves with odd-even

and even-odd streamwise and azimuthal mode number combinations are rising and

eventually reach the the same order of magnitude as mode (1, 1). This precedes the

turbulent flow regime. Note that all three figures confirm that the transition process

is governed by waves with only odd-odd and even-even mode number combinations.

In comparison to the simulations for kc = 1 and kc = 32, the case with an azimuthal

mode number kc = 20 shows the fastest onset of transition. However, it is important

to note that this azimuthal mode number might not represent the optimal value,

since the azimuthal mode numbers kc = 12 or kc = 16 also show a promising behavior

according to Figure 7.16. Nevertheless, compared to kc = 12 or kc = 16 the azimuthal

mode number kc = 20 has the advantage of a smaller computational domain and

thus reduces the computational effort significantly. Hence, another refinement of the

resolution is performed for this case.
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Figure 7.17: Temporal development of the maximum disturbance velocity in stream-
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Figure 7.18: Temporal development of the maximum disturbance velocity in stream-
wise direction |u′|(h,k) for kc = 20 (left) and kc = 32 (right). A(1,1) = 10−4,
Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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7.3.3 Simulations with Increased Resolution

So far, the grid resolution was very low and therefore not appropriate for the inves-

tigation of the late stages of transition. Hence, a further refinement of the resolution

is inevitable. The following simulation is performed for the azimuthal mode number

kc = 20. The computational domain is discretized with 63 Fourier modes in stream-

wise, 345 points in wall-normal and 64 Fourier modes in azimuthal direction, which

corresponds to a total of 5, 608, 320 grid points.

At first, averaged mean flow quantities are investigated. In particular, the skin

friction coefficient cf , the Favre-averaged velocity profile ũ and the streamwise and

azimuthal averaged temperature profile T are presented in Figures 7.19, 7.20 and 7.21,

respectively. The skin friction coefficient cf is calculated according to

cf =
2µ∂u

∂r

Re

∣∣∣∣
w

, (7.2)

where quantities with an overbar φ indicate an average in streamwise and azimuthal

direction

φ̄ =
1

λϕλx

∫ λϕ

0

∫ λx

0

φ(x, ϕ)dxdϕ. (7.3)

Favre-averaged quantities φ̃ are calculated by means of

φ̃ =
ρφ

ρ
. (7.4)

Figure 7.19 shows the temporal evolution of the skin friction coefficient cf . At t =

1.55, a local maximum in the skin friction coefficient can be observed. Then, the

skin friction coefficient sharply increases at t ≥ 1.6, indicating the transition onset.
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It reaches a maximum value of cf = 0.0026. For t ≥ 1.9, the skin friction coefficient

shows an enduring decrease. This behavior is related to the onset of the turbulent

flow regime. For comparison, Figure 7.19 also contains the turbulent skin friction

coefficient cf,turb, which is, according to White (1991), specified as

cf,turb =
0.455

S2ln2
(

0.06
S

µ∗

e

µ∗

w

√
T ∗

e

T ∗

w
Ree

) , (7.5)

where

S =

√
T ∗

aw

T ∗

e
− 1

sin−1(A) + sin−1(B)
,

with

A =
2a2 − b√
4a2 + b2

, B =
b√

4a2 + b2
, a =

√
(γ − 1)

2

T ∗
e

T ∗
w

M2
e and b =

(
T ∗

aw

T ∗
w

− 1

)
.

The adiabatic wall temperature is computed according to Taw = Te + r (T0,e − Te),

with T0,e = Te (1 + (κ− 1)M2
e /2). r indicates the recovery factor and is given as

r = Pr
1

3 ≈ 0.89. The wall temperature and the boundary layer edge temperature

are T ∗
w = 618.22K and T ∗

e = 71.75K, respectively. According to Sutherland’s law,

the dynamic viscosities at the wall and at the boundary layer edge are given as

µ∗
w = 3.1996 · 10−4Ns/m2 and µ∗

e = 4.9788 · 10−5Ns/m2, respectively. Equation (7.5)

is only valid for a flat plate boundary layer. In order to apply the computed skin

friction coefficient to a conical boundary layer, it must be multiplied by a factor G,

where 1.1 < G < 1.15 (White, 1991). The turbulent skin friction coefficient calculated

from equation (7.5) and corrected with the factor G = 1.15 is cf,turb = 0.002. This

value is lower than the maximum value of the skin friction coefficient computed from

TDNS, but seems to be approached for times t > 2.1. Such an overshoot was also

observed by Mayer et al. (2008) in their spatial simulation of oblique breakdown at

Mach 3.
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In addition, the temporal development of the Favre-averaged velocity profile ũ,

plotted in Figure 7.20, is an appropriate quantity to characterize the transition pro-

cess. It can be observed that the gradient dũ/dr at the wall increases with increasing

time. This behavior is characteristic for the laminar-turbulent transition process.

Note that the maximum wall gradient of the velocity profile is directly related to the

maximum value of the skin friction coefficient. As the skin friction decreases, the

gradient dũ/dr at the cone surface decreases accordingly and vice versa. Moreover, it

can be seen from Figure 7.20 that the velocity profiles for t ≥ 1.35 show two inflection

points, which is another feature of the transitional flow regime. Furthermore, it can

be observed that the boundary layer thickness subsequently increases to a value of

approximately 2.5 times the laminar boundary layer thickness. Altough the velocity

profile approaches the shape of a turbulent profile, a fully turbulent state is not yet

reached. This can be concluded from the fact that the velocity profile at the last time

instance t = 2.11 still contains inflection points.

Figure 7.21 presents the temporal evolution of the streamwise and azimuthal aver-

aged temperature profile T . Like the Favre-averaged velocity profiles, the temperature

profiles become fuller as the flow becomes transitional. Furthermore, it can be seen

that the boundary layer thickness increases with time. In addition, it can be verified

that the flow hasn’t reached a fully turbulent state, since a turbulent temperature

profile shape is not completely developed.

An appropriate quantity to visualize the numerical results is the vorticity ω. The

vorticity vector is calculated according to ω = ▽× u. In scalar form the vorticity is

given as

ωx = r
∂w

∂r
− 1

r

∂v

∂ϕ
,

ωr =
∂u

∂ϕ
− ∂w

∂x
,

ωϕ =
∂v

∂x
− ∂u

∂r
.

(7.6)
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Figure 7.19: Temporal evolution of the skin friction coefficient cf,TDNS obtained from
TDNS compared to the skin friction coefficient cf,turb obtained from equation (7.5).
A(1,1) = 10−4, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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Figure 7.20: Temporal evolution of
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A(1,1) = 10−4, Rx = 2024.17, M∞ = 7.95,
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Figure 7.21: Temporal evolution of
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perature profile T . A(1,1) = 10−4, Rx =
2024.17, M∞ = 7.95, T ∗

∞ = 53.35K,
Re∞ = 3, 333, 333.
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The temporal evolution of the vorticity in azimuthal direction ωϕ in the (x-r)-plane

at the streamwise centerline of the computational domain ϕ = 0.078 is shown in Fig-

ure 7.22. Note that negative vorticity values indicate a clockwise rotation. Through-

out this thesis, a clockwise rotation is represented by dashed contour lines and blue

isosurfaces, whereas a counterclockwise rotation is denoted by solid contour lines and

red isosurfaces. Time instance t = 1.35 shows the steady laminar boundary layer.

At t = 1.51, the boundary layer is distorted and shows the presence of rope-like

structures in the outer portion of the boundary layer. These structures indicate the

nonlinear regime. The formation of small clockwise and counterclockwise rotating

vortices, originating from the rope-like structures, can be seen for t = 1.66. The

break up into small scale structures at the tip of these structures can be observed

for t = 1.81. Hereafter,a counterclockwise rotating vorticity layer in the center of the

boundary layer has developed for t = 1.96. The boundary layer thickness increases

with time due to fact that the near-wall boundary layer fluid undergoes a mixing with

the fluid in the outer boundary layer region. Note that the flow pattern at t = 2.11 is

not yet totally random. A fairly constant vorticity distribution in the near-wall region

can be observed. For the different azimuthal position ϕ = 0.0039, the flow structures

show less coherence, but the constant vorticity layer in the near-wall region is also

present as shown in Figure 7.23. This is a further indication that turbulent flow is not

yet fully established. The last time instance t = 2.11 is therefore associated with the

late stages of transition, where the flow exhibits both, larger and smaller structures.

Figure 7.24 gives the temporal development of the streamwise vorticity ωx in the

(x-ϕ)-plane at x = 0.0067. Note that Figure 7.24 shows only one half azimuthal

wave length due to symmetry enforced in azimuthal direction. It can be observed

that the amount of streamwise vorticity subsequently increases with time. For t =

1.51 longitudinal structures start to develop, caused by the growing of the vortex

mode (0, 2). At t = 1.66, one such longitudinal structure can be clearly identified. It
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eventually merges with its neighboring analog for t = 1.81. Finally, the development

of small scale structures throughout the computational domain can be observed for

t = 1.96 and t = 2.11. Compared to the azimuthal vorticity, the streamwise vorticity

ωx demonstrates a more random flow pattern. This is consistent with the findings

of e.g. Eissler (1995), who reported that the spectrum is filled up first in azimuthal

direction.

Furthermore, the flow structures are visualized by means of the Q-criterion. This

criterion identifies coherent vortical structures and, according to Hunt et al. (1988),

represents a relationship between the local strain and rotation rate. Q is positive, if

the rotation rate Ω2 = Ωi,jΩi,j is greater than the strain rate S2 = Si,jSi,j and thus

identifies a vortex core. It is defined as the second invariant of the velocity gradient

vector ▽u. For a circular cylinder, the Q-criterion is specified as (Husmeier, 2008):

Q = −1

2

(
∂v

∂x

∂u

∂r
+
∂v

∂ϕ

∂

∂r

(w
r

)
+
∂u

∂ϕ

∂

∂x

(w
r

))
(7.7)

Isocontour plots of constant Q are given in Figure 7.25 and Figure 7.26. At t = 1.35,

the characteristic structure of a linear oblique disturbance wave can be observed. The

modulation of this structure at the outer portion of the boundary layer is shown for

t = 1.43, which results in the development of hexagonal structures for t = 1.51. This

effect is due to the development of the higher harmonics in the nonlinear regime.

In particular, the superposition of the generated vortex mode (0, 2) and the initially

forced disturbance mode (1, 1) leads to this particular pattern. At t = 1.58, the

hexagonal structures break up and the development of two longitudinal structures can

be seen, indicating the dominance of the streamwise vortex mode. The presence of

these two longitudinal structures is more pronounced for t = 1.66. Simultaneously, a

randomization of the flow within these structures takes place. Finally, Figure 7.26 b)

and Figure 7.26 c) show that the longitudinal structures brake up into small scale
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Figure 7.22: Isocontours of azimuthal vorticity ωϕ at ϕ = 0.078 for a) t = 1.35, b)
t = 1.51, c) t = 1.66, d) t = 1.81, e) t = 1.96 and f) t = 2.11. A(1,1) = 10−4,
Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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Figure 7.23: Temporal evolution of azimuthal vorticity ωϕ at ϕ = 0.039 for t = 1.96
(left) and t = 2.11 (right). A(1,1) = 10−4, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K,
Re∞ = 3, 333, 333.

structures, which spread across the whole computational domain. This represents the

late stages of transition.

7.3.4 Preliminary Summary of Oblique Breakdown Simulations

Altough two-dimensional disturbance waves are stronger amplified than three-dimen-

sional disturbance waves, oblique breakdown was found to be a viable path to tran-

sition for the investigated hypersonic flow over a sharp circular cone. A simulation of

oblique breakdown all the way to the late stages of transition was carried out for the

azimuthal mode number kc = 20. The skin friction coefficient, the Favre-averaged

velocity profile and the streamwise and azimuthal averaged temperature profile were

analyzed and showed their characteristic transformation as the flow became transi-

tional. Also, isocontours of vorticity in streamwise and azimuthal direction as well

as isosurfaces of constant Q described the laminar-turblent transition process and

revealed characteristic features of oblique breakdown. This includes the formation

of hexagonal structures, followed by the development of longitudinal structures and
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Figure 7.24: Temporal evolution of streamwise vorticity ωx at x = 0.0067 for a)
t = 1.35, b) t = 1.51, c) t = 1.66, d) t = 1.81, e) t = 1.96 and f) t = 2.11.
Shown is half the azimuthal wavelength of the pair of secondary waves. A(1,1) = 10−4,
Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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finally the break up into small scale structures.

7.4 Subharmonic Resonance

In the following, subharmonic nonlinear interactions between two-dimensional and

three-dimensional disturbance waves are investigated. First, section 7.4.1 describes

the linear behavior of the fast and slow boundary layer mode for the present setup.

This is necessary for the understanding of the following chapters. Hereafter, the

investigation of symmetric subharmonic resonance is presented in section 7.4.2.

7.4.1 Fast and Slow Mode Behavior

As already briefly mentioned in the introduction, it was found by Fedorov & Khokhlov

(2002); Fedorov (2003) that Mack’s so called first, second, etc. modes aren’t distinct

modes within the framework of the viscous analysis. In fact, there exist two boundary

layer modes, namely mode F and mode S, where the latter has the characteristic

properties of Mack’s first and higher modes depending on the streamwise wave number

αr. Both boundary layer modes are involved in the transition process.

Fedorov (2003), Tumin (2007) and many other authors showed that the boundary

layer modes undergo a synchronization with the acoustic spectrum for small stream-

wise wave numbers αr. The name of mode S, also called slow mode, stems from the

fact that it is synchronized for small αr with the slow acoustic spectrum, having the

phase speed cph,x = 1− 1/M . Accordingly, mode F , also labeled as fast mode, is syn-

chronized with the fast acoustic spectrum, having the phase speed cph,x = 1 + 1/M .

The labeling ‘mode F ’ and ‘mode S’ is commonly used for classification purposes,

since the asymptotic behavior for small αr is a characteristic behavior. With increas-

ing streamwise wave number, two other synchronizations occur. There is one syn-

chronization of mode F with the entropy and vorticity spectrum, having the phase

speed cph,x = 1, as well as one synchronization of mode F with mode S. A synchro-
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nization point is defined as the location of αr where the phase speed cph,x = ωr

αr
of

two or more waves is identical. Figure 7.27 shows the phase velocities cph,x of the

fast mode (mode F ), slow mode (mode S) and the entropy and vorticity waves as

function of the streamwise wave number αr for the investigated setup (kc = 0). The

entropy and vorticity waves have the phase speed cph,x = 1, since they travel with

the free-stream. Figure 7.27 and Figure 7.28 are both obtained from linear stability

theory for the parameters presented in Table 7.1. It can be seen that the fast mode

is synchronized with the entropy and vorticity waves for the streamwise wavenumber

αr = 359.5. The synchronization of the fast and slow mode occurs for the streamwise

wavenumber αr = 427.6. The two synchronizations lead to a significant increase in

the temporal amplification of mode S. This effect can be observed in Figure 7.28,

where the temporal growth rates ωi of mode S and mode F are plotted as a function

of the streamwise wavenumber αr. Clearly, mode S is the dominant mode for the

present setup. Note that Mack’s first-mode region is represented for low streamwise

wave numbers, whereas the second-mode region is represented for higher streamwise

wave numbers after the synchronization. Note further that for certain flow conditions

mode F can be amplified and mode S can be damped after the synchronization.

7.4.2 Parameter Study

According to Craik (1971), symmetric subharmonic resonance, involving one two-

dimensional disturbance wave and a pair of oblique disturbance waves, occurs if the

following constraints are fulfilled:

αr,fund = 2 · αr,sub (7.8)

ωr,fund = 2 · ωr,sub (7.9)

Figure 5.3 shows the temporal growth rate ωi of two-dimensional disturbances as a
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Figure 7.28: Temporal growth rates ωi of
fast and slow mode obtained from TLST.
Rx = 2024.17, Me = 6.76, T ∗

e = 71.75K,
Ree = 4, 796, 970.

function of the the streamwise wavenumber αr. The disturbance wave with the maxi-

mum temporal growth rate ωi,max defines the streamwise wavenumber αr,fund = 465.6

of the primary, fundamental disturbance wave in the following study. This is indicated

by the dotted, vertical line in Figure 5.3. Hence, the subharmonic streamwise wave

number for a resonance according to Craik is given as αr,sub =
αr,fund

2
= 232.8, which

is represented by the dashed, vertical line in Figure 5.3. The disturbance frequencies

ωr,sub and
ωr,fund

2
are plotted against the azimuthal mode number kc in Figure 7.30.

The intersection point of both curves fulfills equation (7.9) and defines the subhar-

monic resonance point. Figure 7.30 (left) originates from temporal direct numerical

simulations, whereas Figure 7.30 (right) is taken from linear stability theory. Note

that DNS predicts a resonance point at kc = 70, unlike LST that predicts kc = 68.

This discrepancy is due to the fact that, first, the second viscosity coefficient is set

to zero for the temporal direct numerical simulations, second, curvature effects are

not included in the LST computations and third, different base flow profiles are used.

Moreover, it can be observed that according to Figure 7.30 (right) subharmonic res-

onance with oblique fast modes does not exist due to the absence of an intersection
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point of mode F with
ωr,fund

2
.

Note that according to Figure 7.30 the difference between the frequencies ωr,sub

and
ωr,fund

2
is very small. Therefore, detuned subharmonic resonance may also occur

for different azimuthal mode numbers. Hence, additional simulations with the az-

imuthal mode numbers of the secondary disturbance waves kc = 40, kc = 50, kc = 60

and kc = 80 are performed. For all cases, the fundamental mode, in the following

denoted as mode (2, 0), is initially forced with the amplitude A(2,0) = 10−4 and the

subharmonic modes, indicated by (1, 1), are forced with the amplitude A(1,1) = 10−6.

The simulations are performed using nine Fourier modes in streamwise, 345 points

in wall-normal and five Fourier modes in azimuthal direction. Figure 7.31 shows the

temporal development of the maximum disturbance velocity in streamwise direction

|u′|(h,k) for different azimuthal mode numbers of the secondary disturbance waves.

Mode (1, 1) deviates from its eigenbehavior at about t = 0.8 for all cases. The de-

parture of mode (1, 1) from its eigenbehavior proves that subharmonic resonance is

present. However, the amplitude of mode (1, 1) levels off shortly after the resonance

onset when mode (2, 0) saturates. All simulations show that the secondary three-
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dimensional disturbances do not exhibit an enduring explosive growth, but saturate

towards the end of the computation and never exceed the amplitude of the primary

disturbance wave. It can therefore be concluded that subharmonic resonance plays a

minor role for the present setup.

This conclusion, however, is contradictory to the results of Bountin et al. (2008),

who reported subharmonic resonance in their M = 5.95 flat plate experiments.

It might be speculated that in the experiments of Bountin et al. (2008) subhar-

monic resonance is caused by a higher amplitude of the secondary disturbance wave.

Hence, a simulation is performed, where the initial amplitude of the secondary three-

dimensional disturbance is increased to A(1,1) = 10−3. This amplitude value is higher

than the initial amplitude of the primary disturbance and was chosen such that the

amplitudes of the the primary and secondary disturbances are nearly the same after

the receptivity region. Figure 7.32 presents the temporal development of the max-

imum disturbance velocity in streamwise direction |u′|(h,k) for the azimuthal mode

numbers of the secondary disturbance waves kc = 70 and kc = 50. The graphs re-

veal that a higher initial amplitude of the secondary disturbance does not influence

the behavior that was already presented in Figure 7.31. This is coherent with the
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Figure 7.31: Temporal development of the maximum disturbance velocity in stream-
wise direction |u′|(h,k) for kc = 40, 50, 60, 70 and 80. A(2,0) = 10−4, A(1,1) = 10−6,
Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.

findings of Chang & Malik (1993), who also reported that an increase of the initial

amplitude of the secondary disturbance does not cause an enduring explosive growth

of mode (1, 1).

In conclusion, subharmonic resonance could be detected for the azimuthal mode

number of the secondary, three-dimensional disturbance waves kc = 70. Compared

to oblique breakdown, subharmonic resonance is weak and plays a minor role for the

given setup. The findings are consistent with those of Ng & Erlebacher (1992), Chang

& Malik (1993), Eissler & Bestek (1996) and Husmeier (2008). Note that in contrast

to Eissler & Bestek (1996) a departure of mode (1, 1) from its eigenbehavior does

not occur immediately after the disturbance input, altough the resonance condition

is always fulfilled. The deviation occurs when the amplitude level of the primary,

two-dimensional disturbance wave has reached a value in the range from 0.2% to 1%.

Altough the initial amplitude of the secondary disturbance was increased, the results



238

0.0 0.5 1.0 1.5
t

1e-12

1e-09

1e-06

1e-03

1e+00

|u
’| (h

,k
)

(2,0)
(4,0)
(1,1)
(3,1)
eigenbehavior

0.0 0.5 1.0 1.5
t

1e-12

1e-09

1e-06

1e-03

1e+00

|u
’| (h

,k
)

(2,0)
(4,0)
(1,1)
(3,1)
eigenbehavior

Figure 7.32: Temporal development of the maximum disturbance velocity in stream-
wise direction |u′|(h,k) for kc = 70 (left) and kc = 50 (right). A(2,0) = 10−4,
A(1,1) = 10−3, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.

show that subharmonic resonance appearently is not a viable path to transition for

the investigated setup.

7.5 Fundamental Resonance

This section is dedicated to the investigation of fundamental resonance for a sharp

circular cone at Mach 7.95. At first, an investigation of the linear flow regime is

carried out in section 7.5.1. Then, a parameter study is performed in section 7.5.2

to identify cases that are promising to cause final breakdown to turbulence. In sec-

tion 7.5.3, a highly resolved simulation of fundamental resonance is presented. Finally,

section 7.5.4 gives a brief summary of the results.

7.5.1 Investigation of the Linear Regime

Fundamental resonance is characterized by nonlinear interactions between a primary,

two-dimensional disturbance wave (1, 0) and a pair of secondary, three-dimensional

disturbance waves (1, 1) with the same frequency and streamwise wave length. Note

that according to Figure 5.3 the streamwise wave number of both, the two-dimensional,

primary disturbance wave and the three-dimensional, secondary disturbance wave is

given as αr = 465.6 for the present setup. As summarized by Herbert (1988), funda-
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mental resonance is generally linked to secondary instabilities. Since Eissler & Bestek

(1996) reported fundamental resonance governed by both, mode S and mode F dif-

ferent fundamental resonances, which involve different discrete eigenmodes, might be

possible. In the following, results of lower-amplitude TDNS and TLST are used in or-

der to locate possible resonance interactions between different discrete modes for the

same frequency by applying Craik’s resonance conditions. Note that this approach

is not conventional, since, as mentioned above, fundamental resonance is commonly

used in the context of secondary instability. The results of this study are illustrated

in Figure 7.33, where the frequencies of waves with αr = 465.6 are plotted versus the

azimuthal mode number. Note that the results in Figure 7.33 (left) are taken form

temporal DNS, whereas Figure 7.33 (right) was calculated using Mack’s temporal lin-

ear stability solver. As already presented in section 7.4, the differences between the

graphs are due to the following facts: First, the second viscosity coefficient λ = 0.8

is not considered in the temporal direct numerical simulations. Second, curvature

effects are present in the TDNS and third, different base flow profiles are used (sec-

tion 7.2). Despite the different assumptions of TDNS and TLST, both figures show

the same trends and thus can be compared qualitatively. As expected, a resonance

point cannot be identified in Figure 7.33 (left). However, Figure 7.33 (right) reveals

a possible resonance between a two-dimensional mode S and an oblique mode F with

the same frequency for the azimuthal mode number kc = 26. Hence, the questions

arise, whether a fundamental resonance between a two-dimensional mode S and an

oblique mode S is present, or whether a resonance between a two-dimensional mode S

and an oblique mode F can be detected.

7.5.2 Parameter Study

Simulations are performed for several different azimuthal mode numbers of the sec-

ondary disturbance waves, kc = 20, 26, 30, 40 . . . , 80. These simulations are carried
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Figure 7.33: Fundamental frequency ωr,fund for kc = 0 and kc > 0. Left: DNS, slow
mode, A(1,1) = 10−7, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
Right: LST, fast and slow mode, A(1,1) = 10−7, Rx = 2024.17, Me = 6.76, T ∗

e =
71.75K, Ree = 4, 796, 970.

out with a sufficient resolution of nine Fourier modes in streamwise, 345 points in

wall-normal and five Fourier modes in azimuthal direction. The disturbance waves

(1, 0) and (1, 1) are forced with the amplitude A(1,0) = 10−4 and A(1,1) = 10−6, re-

spectively. Figure 7.34 shows the temporal development of the maximum disturbance

velocity in steamwise direction |u′|(h,k) for different azimuthal mode numbers of the

secondary, oblique waves. All azimuthal mode numbers show that the secondary dis-

turbance mode deviates from its linear eigenbehavior and exhibits resonant growth

at around t = 1.1. This occurs when the primary, two-dimensional disturbance mode

reaches an amplitude level of about one percent.

Figure 6.3 shows the temporal growth rate σi of the secondary, three-dimensional

disturbance wave (1, 1) obtained from the maximum streamwise disturbance velocity

as a function of the azimuthal mode number kc for the particular time instances

t = 0.7 and t = 1.4 of Figure 7.34 before and after the resonance onset, respectively.

Before the resonance, the growth rate of mode (1, 1) shows its characteristic linear

behavior: It decreases as the azimuthal mode number is increased and is even damped

for kc > 60. After the resonance, the secondary temporal growth rate σi has increased
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for all azimuthal mode numbers kc. The maximum of the secondary growth rate σi

corresponds to the azimuthal mode number kc = 50.

Furthermore, it can be observed from Figure 7.34 and Figure 6.3 that the results

around kc = 26 do not show a particularly pronounced growth of the secondary dis-

turbance wave, which already indicates that the observed fundamental resonance is a

secondary instability between the two slow modes. For further insight, the temporal

development of the wall-normal amplitude distribution is investigated. Figure 7.36

shows the wall-normal amplitude distributions of the disturbance velocity in stream-

wise direction u′ of the primary (kc = 0) and secondary (kc = 50) disturbance waves.

It can be observed that the amplitude distribution of the secondary disturbance waves

drastically changes its shape after the onset of fundamental resonance for t ≈ 1.1.

The maximum value, before the resonance located at r ≈ 0.00475, shifts towards

the wall. Apparently, the amplitude distribution of the secondary disturbance wave

changes towards the amplitude distribution of the primary disturbance wave. This in-

dicates that nonlinear effects (secondary instability) are responsible for the secondary

disturbance growth. For comparison, Figure 7.37 presents the wall-normal amplitude

distributions of the disturbance velocity in streamwise direction u′ of the primary and

secondary disturbance waves for the case with the azimuthal mode number kc = 26.

As for the kc = 50 case, the shape of the eigenfunctions changes as the resonant

growth sets in. Nevertheless, the effect is not as pronounced as for the case with the

azimuthal mode number kc = 50.

Figure 6.6 shows the temporal evolution of the wall pressure of the secondary

disturbance wave |p′|wall
(1,1) for four different azimuthal mode numbers kc = 26, kc = 50,

kc = 60 and kc = 70. Again, it can be observed that the strongest fundamental

resonance occurs for the azimuthal mode number kc = 50. In addition, the temporal

development of the wall pressure for kc = 60 and, in particular, kc = 70 shows a

modulation prior to the resonance onset. After resonance, the amplitude modulation

disappears. A similar behavior was observed by Eissler & Bestek (1996) for a Mach 4.8
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Figure 7.34: Temporal development of maximum disturbance velocity in streamwise
direction |u′|(h,k) for nine different azimuthal mode numbers kc. A(1,0) = 10−4, A(1,1) =
10−6, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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flow over a flat plate. They argued that such a modulation is due to the presence of

two boundary layer modes (mode S and mode F ). As the resonant growth sets in,

only one boundary layer mode is dominant and the amplitude modulation vanishes.

For the present setup however, the amplitude modulation only appears for very high

azimuthal mode numbers, where the secondary disturbance wave is initially damped.

To close this chapter, it can be concluded that the identified fundamental reso-

nance, which is particularly pronounced for the azimuthal mode number kc = 50,

might be caused by mode S only. Evidence for this conclusion is illustrated in Fig-

ure 7.28, which shows that the most dominant mode for the given setup is mode S,

and in Figure 6.6, which demonstrates that no amplitude modulation and thus only

one boundary layer mode is present for the most promising case with the azimuthal

mode number kc = 50. Furthermore, the wall-normal amplitude distributions before

the resonance onset in Figure 6.4 and Figure 6.5 are typical for mode S in the linear

regime.
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7.5.3 Simulations with Increased Resolution

The simulation presented in this chapter is performed with 33 Fourier modes in

streamwise, 345 points in wall-normal and 16 Fourier modes in azimuthal direction.

In order to reduce the computational cost, mode (1, 0) and mode (1, 1) are initialized

with A(1,0) = A(1,1) = 10−4 and not like in the previous chapter with A(1,0) = 10−4

and A(1,1) = 10−6. Although both, the primary wave and the pair of secondary waves

are forced with the same amplitude, this simulation can be considered to represent

a classical fundamental breakdown, since at the resonance location the amplitude of

mode (1, 1) is significantly lower than the amplitude of mode (1, 0). In this simulation,

the pair of secondary, oblique waves has the azimuthal mode number kc = 50 and the

streamwise wave number αr = 465.6. As can be seen from Figure 6.7, the secondary,

oblique disturbance waves (1, 1) depart from their eigenbehavior at t ≈ 0.9 and exceed

the amplitude level of the primary disturbance wave (1, 0) at t ≈ 1.5, indicating a

secondary instability. In addition, it can be observed that the vortex mode (0, 1) plays

an important role, since it shows the highest amplitude in the transitional regime for

t > 1.4. Note that this vortex mode is initially generated by interactions of e.g. the

primary disturbance wave (1, 0) and the secondary disturbance waves (1, 1). Note
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Figure 7.39: Temporal development of the maximum disturbance velocity in stream-
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further that in contrast to oblique breakdown the transition process of fundamental

resonance is governed by modes with even-even and odd-odd as well as even-odd and

odd-even streamwise and azimuthal mode number combinations.

A further refinement of the resolution to 63 Fourier modes in in streamwise, 345

points in wall-normal and 64 Fourier modes in azimuthal direction, corresponding to

a total of 5, 608, 320 grid points, allows for a thourough investigation of fundamental

resonance. The following analysis is based on the investigation of the temporal evolu-

tion of the skin friction coefficient, the Favre-averaged velocity profile, the streamwise

and azimuthal averaged temperature profile, the vorticity components in streamwise

and azimuthal direction and the Q-criterion. The skin friction coefficient as well as the

averaged quantities are computed according to equations (7.2), (7.3) and (7.4). The

vorticity and the Q-criterion are obtained by equations (7.6) and (7.7), respectively.

At first, the temporal evolution of the Favre-averaged velocity profile ũ is studied.

It can be observed from Figure 7.40 that the profiles become fuller with increasing

time due to the increased velocity gradient dũ/dr at the wall. Also, an increase in

boundary layer thickness to a value of about 2.5 times the laminar boundary layer
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thickness is noticeable. Moreover, the appearance of inflection points confirms the

onset of transition. Note that a fully turbulent state isn’t reached yet, since the profile

at the last time instance t = 1.98 still contains inflection points.

The temporal development of the streamwise and azimuthal averaged temperature

profile T is plotted in Figure 7.41. It can be observed that the profiles become fuller

and the boundary layer becomes thicker as the flow reaches the transitional regime.

Since the temperature profile at t = 1.98 still contains multiple inflection points,

Figure 7.41 confirms that a fully turbulent flow regime isn’t reached. As indicated

by the insert in Figure 7.41, the temperature distributions for t = 1.27 and t = 1.57

show an increase in temperature close to the wall.

The temporal evolution of the skin friction coefficient cf is shown in Figure 6.10.

At t ≈ 1.0, the initially laminar value of the skin friction increases to a value of

cf ≈ 0.0018, then remains approximately constant between t ≈ 1.1 and t ≈ 1.6,

before it sharply increases for t > 1.6. This reflects the temporal evolution of the

maximum disturbance velocity plotted in Figure 6.7. The growth of mode (1, 0) up

to t ≈ 1.05 and its subsequent nonlinear saturation represents the first increase of

the skin friction coefficient and its constant temporal development until t ≈ 1.6,

whereas the sharp increase of the skin friction coefficient at t ≈ 1.6 coincides with

the saturation of the secondary disturbance mode (1, 1). The skin friction coefficient

reaches a maximum value of cf = 0.0045 at t = 1.87 and then decreases for t > 1.9.

Compared to the skin friction coefficient of oblique breakdown, it reaches values that

are twice as high. Note that the skin friction coefficient obtained from TDNS for

t > 1.9 doesn’t agree with the turbulent skin friction coefficient cf,turb obtained from

equation (7.5). However, it is believed that the turbulent skin friction coefficient

cf,turb will be reached if the simulation is continued.

Figure 7.43 presents the temporal evolution of the azimuthal vorticity ωϕ in the

(x-r)-plane at the the azimuthal location ϕ = 0.0314. From a steady laminar bound-

ary layer at t = 0.97, wave-like structures develop for t ≥ 1.09, which indicate the
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formation of Λ-vortices. These wave-like structures become more pronounced with

increasing time. At t = 1.74, a layer of positive azimuthal vorticity has developed in

the range from r ≈ 0.002 to r ≈ 0.005. Hereafter, the break up into smaller structures

can be observed for t = 1.86 and t = 1.98. In addition, an increase in boundary layer

thickness, which is typical for the transition process, is noticeable.

The temporal development of the streamwise vorticity ωx in the (x-ϕ)-plane lo-

cated at x = 0.0067 is shown in Figure 7.44. Note that only half the azimuthal wave

length is shown due to the symmetry enforced in azimuthal direction. At t = 1.35,

no streamwise vorticity is visible. Thus, the flowfield is still two-dimensional and

laminar. At t = 1.48, however, the three-dimensional modulation of the flow struc-

tures is represented by the formation of vortical structures, indicated by an increased

streamwise vorticity. This becomes more pronounced for t = 1.74. The increase of the

boundary layer thickness and the break up into smaller structures can be observed

for t = 1.86 and t = 1.98.

Figure 7.45 and Figure 7.46 show isosurfaces of constant Q at different times.

The initially two-dimensional flow structure at t = 1.35 undergoes a modulation and

becomes three-dimensional at t = 1.48. Hereafter, the formation of a Λ-vortex can

be observed for t = 1.61 and t = 1.74. This is a well known feature of fundamental

resonance (Klebanoff et al., 1962). For visualization purposes, the vortex is indicated

with dashed blue lines. Note that the tip of the Λ-vortex is lifted up, whereas the

legs are closer to the wall. For t = 1.86, a hairpin vortex develops, which is indicated

by the blue circle. The last time instance t = 1.98 shows that the flow breaks up

into smaller structures. Once again, it can be observed that the flow still exhibits a

noticeable coherence, indicating that turbulence is not yet reached.

Note that for this simulation higher streamwise and azimuthal modes of the v- and

w-velocity components as well as the temperature show grid-mesh oscillations in the

region close to the wall. These grid-mesh oscillations occur at first around t = 1.15

and are caused by a too large time step ∆t. However, they are damped over time
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Figure 7.43: Temporal evolution of azimuthal vorticity ωϕ at ϕ = 0.0314 for a)
t = 0.97, b) t = 1.09, c) t = 1.23, d) t = 1.35, e) t = 1.48, f) t = 1.61, g) t = 1.74,
h) t = 1.86 and i) t = 1.98. A(1,0) = 10−4, A(1,1) = 10−4, Rx = 2024.17, M∞ = 7.95,
T ∗
∞ = 53.35K, Re∞ = 3, 333, 333.
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Figure 7.44: Temporal evolution of streamwise vorticity ωx at x = 0.0067 for a)
t = 1.35, b) t = 1.48, c) t = 1.61, d) t = 1.74, e) t = 1.86 and f) t = 1.98.
Shown is half the azimuthal wavelength of the pair of secondary waves. A(1,0) = 10−4,
A(1,1) = 10−4, Rx = 2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.
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Figure 7.45: Temporal evolution of constant isosurfaces of Q for the early stages of
transition at a) t = 1.35, b) t = 1.48 and c) t = 1.61. A(1,0) = 10−4, A(1,1) = 10−4,
Rx = 2024.17, M∞ = 7.95, T ∗
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and eventually vanish, rather than terminating the simulation. In order to check if

this has a negative influence on the results in this chapter, the simulation was rerun

with a thirty three percent smaller time step for a time interval between t = 1.1 and

t = 1.3. It was found that, first, the grid-mesh oscillations did not appear and, second,

the results did not exhibit any notable difference compared to the simulation with

the larger time step. This is e.g. illustrated in Figure 6.10, where the skin friction

coefficient is plotted for both, the smaller and larger time steps. Note in particular

that the above mentioned ”bump” in the temperature distribution for t = 1.27 and

t = 1.57 shown in Figure 7.41 is also present in the simulation with the smaller time

step. It can be concluded that the simulation with the larger time step represents the

correct physics and that the numerical instability has no negative influence on the

results. All presented figures are therefore taken from the simulation with the larger

time step.

7.5.4 Preliminary Summary of Fundamental Resonance Simulations

Numerical investigation of fundamental resonance for the given setup revealed that

fundamental resonance between a two-dimensional and three-dimensional mode S is

particularly pronounced for the azimuthal mode number of the secondary, oblique

disturbance waves kc = 50. In contrast, fundamental resonance between a two-di-

mensional mode S and a three-dimensional mode F could not be identified. A weak

influence of mode F might be present in the amplitude modulation of the temporal

evolution of the wall pressure for very high azimuthal mode numbers of the secondary,

oblique disturbance waves (kc > 60).

The identified fundamental resonance between the two slow modes was studied

until the late stages of transition. The investigation of the mean flow quantities re-

vealed characteristic features of the laminar-turbulent transition, such as an increase

in boundary layer thickness, fuller mean flow profiles and a sharply increased skin fric-
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tion coefficient. The flow structures, analyzed by means of vorticity and Q-criterion,

showed the formation of Λ-vortices, hairpin vortices and the break up into smaller

structures.

7.6 Comparison of Breakdown Scenarios

This chapter provides an attempt to compare the three previously investigated break-

down scenarios. In particular, the question arises, which of the scenarios is the most

dominant transition process. Due to the different nature of the breakdown scenarios,

the answer to this question is difficult. As presented in section 7.4, subharmonic

resonance is apparently not important for the investigated sharp cone geometry and

therefore won’t be considered in the following comparison.

A simulation is performed where both, oblique breakdown and fundamental res-

onance are simultaneously forced in order to directly compare their influence on the

transition onset. As known from previous chapters, each mechanism is dominant for

a different azimuthal mode number kc. Fundamental resonance is most pronounced

for the azimuthal mode number of the secondary disturbance waves kc = 50 and

oblique breakdown was found to be strong for an azimuthal mode number kc = 20.

In addition, the streamwise wave numbers are slightly different for the two scenar-

ios. The simulations of fundamental resonance were carried out with a streamwise

wave number αr,fund = 477.04, whereas the simulations of oblique breakdown were

performed for αr,obl = 465.55. Hence, the following approach is used to implement

both mechanisms in one single computation:

The simulation is performed with an azimuthal extent of the computational do-

main corresponding to the azimuthal mode number kc = 10 and an initial forcing of

the modes (1, 0), (1, 2) and (1, 5) with the amplitudes A(1,0) = 10−4, A(1,2) = 10−4

and A(1,5) = 10−6, respectively. Mode (1, 2) corresponds to the oblique disturbance

mode (1, 1) of the pure oblique breakdown simulations with an azimuthal mode num-
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Figure 7.47: Comparison of oblique breakdown and fundamental resonance by means
of the temporal development of the maximum disturbance velocity in streamwise
direction |u′|(h,k). A(1,2),obl = 10−4, A(1,0),fund = 10−4, A(1,5),fund = 10−6. Rx =
2024.17, M∞ = 7.95, T ∗

∞ = 53.35K, Re∞ = 3, 333, 333.

ber kc = 20 and mode (1, 5) represents the secondary, oblique disturbance mode (1, 1)

of the pure fundamental resonance simulations with an azimuthal mode number

kc = 50. The streamwise wave number αr is chosen to be αr = 470. This value

is a compromise, but as can be seen from Figure 7.3.1 still very close to the maximum

amplification for both cases. The simulation is performed with seventeen Fourier

modes in streamwise, 345 points in wall-normal and sixteen Fourier modes in az-

imuthal direction.

The result of the simulation is presented in Figure 7.6.1, which shows the tempo-

ral development of the maximum disturbance velocity in streamwise direction |u′|(h,k).

The dashed lines indicate the modes that are related to oblique breakdown, in particu-

lar the initially forced mode (1, 2), the longitudinal vortex mode (0, 4) and mode (1, 6).

These modes correspond to the modes (1, 1), (0, 2) and (1, 3) of the pure oblique

breakdown simulations, respectively. The solid lines label modes that are related to

fundamental resonance, namely the two-dimensional, primary disturbance mode (1, 0)

and the secondary, three-dimensional disturbance mode (1, 5). As can be seen from
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Figure 7.6.1, modes (0, 4) and (1, 6) exceed the amplitude level of the initially forced

three-dimensional mode (1, 2) at t ≈ 1.0. The secondary disturbance mode (1, 5) of

fundamental resonance departs from its eigenbehavior at t ≈ 0.9, but does not reach

the amplitude level of the primary, fundamental disturbance mode (1, 0). This be-

havior demonstrates that oblique breakdown seems to govern the transition process

for the present setup, whereas fundamental resonance apparently plays a weaker role.

However, oblique breakdown shows for t > 0.9 a slightly different behavior from the

results presented in section 7.3 due to wave interactions with the additionally forced

modes. Furthermore, one has to keep in mind that the onset of transition based on

fundamental resonance depends on the amplitude of the secondary disturbance. A

higher initial amplitude of the secondary disturbance mode would lead to an advanced

transition onset. This demonstrates that an ultimate conclusion cannot not be drawn

from the presented results.

Both, oblique breakdown and fundamental resonance are strong mechanisms for

the investigated Mach 7.95 flow over a sharp circular cone, but a combined simulation

of these scenarios does not reveal any conclusive trends. The interpretation of the

results is difficult and based on speculations. Hence, continuative investigations are

necessary, including an investigation of the developing flow structures. This, however,

requires higher resolved simulations, which won’t be conducted in the framework of

this thesis.

7.7 Summary of Mach 8 Temporal Simulations

Laminar–turbulent transition in a hypersonic boundary layer on a sharp circular cone

was investigated using temporal direct numerical simulations. The numerical simu-

lations were performed for a hypersonic flow under cold wind tunnel conditions at

M∞ = 7.95, T ∗
∞ = 53.35K and Re∞ = 3, 333, 333. First, the temporal code was

validated by means of linear stability theory. Then, three different transition mecha-
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nisms were investigated by introducing low-amplitude disturbances into the laminar

boundary layer in order to study their temporal development. In particular, oblique

breakdown, subharmonic resonance and fundamental resonance were analyzed. It

was shown that oblique breakdown and fundamental resonance are viable paths to

transition, whereas subharmonic resonance plays a minor role for the investigated

setup.

The validation was performed by comparing the results obtained from tempo-

ral direct numerical simulations with the results computed from compressible linear

stability theory. An excellent agreement between both methods was achieved. The

validation was successful for both, two- and three-dimensional disturbances. More-

over, the influence of the domain height and the wall-normal grid resolution on the

TDNS results were investigated.

Oblique breakdown is governed by a pair of oblique disturbance waves with equal,

but opposite wave angles. It was shown that the transition is based on interactions

of modes with odd-odd and even-even mode number combinations (h + k = even).

Eventually, a transitional flow regime is reached, characterized by the growth of odd-

odd and even-even mode number combinations and, associated with that, a significant

increase in the skin friction coefficient. The process of laminar-turbulent transition

was also described by the temporal evolution of the Favre-averaged velocity profiles

and the streamwise and azimuthal averaged temperature profiles. When the flow

became transitional, the profiles became fuller and showed an increase in boundary

layer thickness as well as the development of inflection points. Furthermore, the

temporal evolution of the flow structures, visualized by means of the streamwise and

azimuthal vorticity and the Q-criterion, showed the characteristic properties of oblique

breakdown. The formation of hexagonal structures, followed by the development

of longitudinal structures and eventually the break up into small scale structures

was observed. Altough two-dimensional disturbances are stronger amplified than

three-dimensional waves for the present flow at Mach 7.95, oblique breakdown was
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demonstrated to be a viable path to transition for the investigated azimuthal mode

number kc = 20. Hence, it can be concluded that oblique breakdown is an important

mechanism also for hypersonic flow regimes.

Interactions between a two-dimensional, primary wave and a pair of three-dimen-

sional secondary waves with half the frequency and twice the streamwise wave length

of the primary wave govern symmetric subharmonic resonance. For the given setup,

the subharmonic resonance conditions are fulfilled for secondary disturbance waves

with the azimuthal mode number kc = 70. However, it was shown that subharmonic

resonance is weak when compared to other mechanisms. It can therefore be concluded

that subharmonic resonance is an unlikely breakdown mechanism for the investigated

hypersonic boundary layer on a sharp circular cone.

Fundamental resonance is governed by interactions between a two-dimensional,

primary disturbance wave and a pair of three-dimensional, secondary disturbance

waves with the same frequency and streamwise wave length as the two-dimensional

wave. It was shown that only one boundary layer mode, namely mode S, is dominant

for the investigated setup. Fundamental resonance between a two-dimensional mode S

and a three-dimensional mode F could not be detected. A weak influence of mode F

might be present for very high values of the azimuthal mode number of the secondary

disturbance waves (kc > 60), indicated by an amplitude modulation in the temporal

evolution of the wall pressure. In contrast, fundamental resonance between the two

slow modes exhibits strong resonant growth, in particular for secondary, oblique waves

with the azimuthal mode number kc = 50. It was therefore investigated until the late

stages of transition. As for oblique breakdown, the Favre-averaged velocity profiles

and the streamwise and azimuthal averaged temperature profiles became fuller and

showed an increase in boundary layer thickness as well as the development of inflec-

tion points. All three features are characteristic for the laminar-turbulent transition

process. In addition, the investigation of the flow structures by means of the stream-

wise and azimuthal vorticity and the Q-criterion demonstrated the three-dimensional
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modulation of the initially two-dimensional flow field, leading to the formation of

Λ-vortices. This was followed by the development of hairpin vortices and the break

up into smaller structures.

A single low resolved simulation was performed to compare the investigated break-

down scenarios and to get an idea which of the mechanisms is the most dominant

transition process. For the particular setup, oblique breakdown seemed to be the

favored mechanism. However, final conclusions could not be made due to the low

resolution and the different nature of the breakdown scenarios, i.e. for example the

fact that oblique breakdown is governed by a pair of oblique, primary waves, whereas

fundamental resonance is governed by a two-dimensional, primary wave and a pair of

oblique, secondary disturbance waves at lower amplitude. In order to compare these

mechanisms in more detail, higher resolved simulations are inevitable.

It is important to note that the temporal approach contains numerous assump-

tions, which decrease the computational cost, but also influence the results. Despite

these assumptions, the temporal approach provides reasonable results about the local

flow behavior and is an excellent tool for parameter studies. The presented tempo-

ral direct numerical simulations of a hypersonic boundary layer at M = 7.95 on a

sharp circular cone are therefore very helpful for the setup of more expensive spatial

simulations.
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8. Conclusions

8.1 Supersonic Flat–Plate Boundary Layer at Mach 3

The nonlinear transition regime of a supersonic flat–plate boundary layer was investi-

gated using linear stability theory (LST) and direct numerical simulations (DNS). To

date, the most dominant nonlinear mechanism that eventually transitions a laminar,

supersonic boundary layer to turbulence is still unknown. The knowledge of the rel-

evant nonlinear mechanisms is however mandatory for the accurate determination of

the transition onset. Previous investigations (Fasel et al., 1993; Kosinov et al., 1994)

of the nonlinear transition regime discovered two main nonlinear mechanisms, the so-

called “oblique breakdown” mechanism and “asymmetric subharmonic resonance”.

Several questions related to both mechanisms are still unresolved and hence, are the

main focus of this research.

We identified oblique breakdown in the experiments by Kosinov and his co-workers

who investigated asymmetric subharmonic resonance in a Mach 2 flat-plate boundary

layer (Mayer et al., 2007; Mayer & Fasel, 2008). By disturbing only the fundamen-

tal frequency from the experiments, it was possible to show that the nonlinear wave

interactions for the fundamental frequency exhibited features of a new breakdown

mechanism that could be linked to oblique breakdown. A DNS of a broadband dis-

turbance environment (Mayer et al., 2009a) further suggests that oblique breakdown

might be the most dominant nonlinear mechanism. However, a nonlinear mechanism

is only relevant for the transition process if this mechanism can indeed completely

transition a laminar boundary layer to turbulence. To answer this question the en-

tire transition path from the linear regime to the final breakdown to turbulence was

simulated for a Mach 3 boundary layer using DNS. Oblique breakdown was initi-

ated by harmonically forcing two oblique instability waves with equal but opposite

wave angle. The numerical simulations clearly demonstrated that oblique breakdown
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is capable of transitioning a laminar boundary layer to fully developed turbulence.

Typical mean-flow properties of a turbulent, supersonic boundary layer were reached

close to the end of the computational domain. In the transitional regime, the skin

friction increased significantly in streamwise direction until a peak was reached. The

following decay of the skin-friction coefficient approached correlations and compara-

ble data for turbulent boundary layers in the literature. Downstream of the peak

in skin friction, the flow lost its periodicity in time with respect to the initial forc-

ing frequency. A logarithmic region in the van Driest transformed mean streamwise

velocity profile was formed and the power spectra of velocity components exhibited

well-known theoretical scaling laws.

As a summary of this research it can be concluded that independent of the tran-

sition scenario (natural transition or controlled transition) oblique breakdown may

be the most relevant nonlinear transition mechanism for supersonic boundary layers.

Hence, for flat-plate or circular cone geometries at zero angle of attack, the transi-

tion onset can be determined by considering the nonlinear wave interactions of an

oblique breakdown mechanism. As illustrated in chapter 5, the transition onset is

located at the streamwise position where the skin friction coefficient deviates from its

laminar distribution. This event occurs when the streamwise amplitude levels of the

steady vortex modes [0,±2] surpasses the streamwise amplitude distribution of the

initially forced wave modes [1,±1]. This fact may serve as a simple criterion for the

determination of the streamwise location of the transition onset.

8.2 Hypersonic Sharp Cone Boundary Layer at Mach 8

The linear and nonlinear development of disturbances in a hypersonic boundary layer

on a sharp cone were studied using spatial direct numerical simulations. Particular

attention was paid to the nonlinear regime of transition. For this research, the flow

conditions from the experiments by Stetson et al. (1983b) were used.
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Axisymmetric pulse disturbances were introduced into the flow to generate a broad

frequency spectrum of two-dimensional disturbances for comparison with LST data

and to aid in the selection of disturbance frequencies for controlled transition sim-

ulations. These simulations revealed an unexpected, rapid nonlinear growth of low-

frequency waves. Further examination showed that this growth is likely caused by

resonance triads consisting of two relatively high frequency waves (within the band

of most unstable second mode axisymmetric waves) and a third wave with a fre-

quency equal to the difference in frequencies between the other two modes. Three–

dimensional simulations allowing only a single higher azimuthal mode showed that

these low-frequencies resonances could heavily influence low-frequency oblique waves

as well.

Simulations of three-dimensional wave packets forced with a moderately high am-

plitude (Ain = 10−2) showed strong evidence of nonlinear interactions by the end of

the computational domain. The most dominant nonlinear interaction within the wave

packet appeared to be between axisymmetric and oblique waves of the same frequency.

This pointed to the possible relevance of fundamental breakdown for the investigated

flow. A detailed study of fundamental resonance was performed using controlled

disturbance inputs. A parameter study revealed strong resonant growth for several

different azimuthal modes in the presence of an axisymmetric primary disturbance

wave. The mode showing the largest growth rate after resonance (kc = 46) was chosen

for several highly resolved simulations of fundamental breakdown. Flow structures

from these simulations revealed remarkable similarity to fundamental breakdown in

incompressible flows and are dominated by the formation of aligned Λ vortices which

begin stretching and breaking up into smaller scales. However, for the hypersonic

boundary layer, the streamwise extent over which the nonlinear regime of transition

occurs is extraordinarily long. For these simulations the skin friction initially rises

in response to the large amplitude primary disturbance wave and then features a

dip before again rising sharply as nonlinear interactions cause many higher modes to
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rapidly reach large amplitudes.

An additional simulation of the oblique breakdown mechanism was also performed

for comparison with fundamental breakdown. The oblique breakdown mechanism

also initiated transition for the investigated flow conditions and forcing parameters.

However, the onset of transition was not as dramatic and the skin friction did not

reach a level nearly as high as for the fundamental breakdown. It must be made

clear that comparing these two mechanisms is quite difficult due to their completely

different nature. Although the investigated oblique breakdown did not progress as

far into the transitional regime, it seems clear that both mechanisms are relevent for

hypersonic boundary layers.

Additionally, Temporal direct numerical simulations were performed to compli-

ment the spatial simulations. First, the temporal code was validated by comparing

results with linear stability theory. Then, three different transition mechanisms were

investigated by introducing low-amplitude disturbances into the laminar boundary

layer in order to study their temporal development. In particular, oblique breakdown,

subharmonic resonance and fundamental resonance were analyzed. It was shown that

oblique breakdown and fundamental resonance are viable paths to transition, whereas

subharmonic resonance seems to be a weaker mechanism for the investigated flow.

It was shown that in the case of oblique breakdown, transition is based on inter-

actions of modes with odd-odd and even-even mode number combinations (h + k =

even). Eventually, a transitional flow regime is reached, characterized by the growth

of odd-odd and even-even mode number combinations and, associated with that, a

significant increase in the skin friction coefficient. The process of laminar-turbulent

transition was also studied by the temporal evolution of the Favre-averaged velocity

profiles and the streamwise and azimuthal averaged temperature profiles. When the

flow became transitional, the profiles became fuller and showed an increase in bound-

ary layer thickness as well as the development of inflection points. Furthermore,

the temporal evolution of the flow structures, visualized by means of the streamwise
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and azimuthal vorticity and the Q-criterion, showed the characteristic properties of

oblique breakdown. The formation of hexagonal structures, followed by the develop-

ment of longitudinal structures and eventually the break up into small scale struc-

tures was observed. Altough two-dimensional disturbances are stronger amplified

than three-dimensional waves, oblique breakdown was demonstrated to be a viable

path to transition for the investigated azimuthal mode number kc = 20. Hence, it

can be concluded that oblique breakdown is also a relevant mechanism for hypersonic

boundary layers.

Fundamental resonance is governed by interactions between a two-dimensional,

primary disturbance wave and a pair of three-dimensional, secondary disturbance

waves with the same frequency and streamwise wave length as the two-dimensional

wave. It was shown that only one boundary layer mode, namely mode S, is dominant

for the investigated setup. Fundamental resonance between a two-dimensional mode S

and a three-dimensional mode F could not be detected. A weak influence of mode F

might be present for very high values of the azimuthal mode number of the secondary

disturbance waves (kc > 60), indicated by an amplitude modulation in the temporal

evolution of the wall pressure. In contrast, fundamental resonance between the two

slow modes exhibits strong resonant growth, in particular for secondary, oblique waves

with the azimuthal mode number kc = 50. It was therefore investigated until the late

stages of transition. As for oblique breakdown, the Favre-averaged velocity profiles

and the streamwise and azimuthal averaged temperature profiles became fuller and

showed an increase in boundary layer thickness as well as the development of inflec-

tion points. All three features are characteristic for the laminar-turbulent transition

process. In addition, the investigation of the flow structures by means of the stream-

wise and azimuthal vorticity and the Q-criterion demonstrated the three-dimensional

modulation of the initially two-dimensional flow field, leading to the formation of

Λ-vortices. This was followed by the development of hairpin vortices and the break

up into smaller structures.
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It is important to note that the temporal approach contains numerous assump-

tions, which decrease the computational cost, but also influence the results. Despite

these assumptions, the temporal approach provides reasonable results about the local

flow behavior and is an excellent tool for parameter studies. The presented temporal

direct numerical simulations of a hypersonic boundary layer at Mach 8 on a sharp

circular cone are therefore very helpful for the setup of the computationally more

expensive spatial simulations in future research.
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